【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数

48 篇文章 1 订阅
17 篇文章 0 订阅

  CTT=清华集训

题目大意

  有 n 个点,点权为ai,你要连接一条边,使该图变成一颗树。

  对于一种连边方案 T ,设第i个点的度数为 di ,那么这棵树的价值为:

val(T)=(i=1nadiidmi)(i=1ndmi)

  求所有生成树的价值和 mod998244353

   n30000,m30

题解

  很容易想到prufer序列

  先把式子化简:

ans=(i=1nadiidmi)(i=1ndmi)=i=1ndmi(j=1nadjjdmj)=i=1nadiid2mi(j=1,j!=inadjjdmj)

  就是得到排列后选一个数 i ,把贡献乘上dmi

  考虑最简单的做法,记 fi,j 为前 i 个数,占了j个空,没有额外的选择一个数的贡献, gi,j 就是选了一个数。

  很容易得到DP式。这个DP是 O(n3) 的,可以用FFT优化到 O(n2logn)

  注意到 m 很小,还记得那个乘方转组合数和斯特林数的套路吗?

  先在prufer数列后面补上1~ n ,这样写了数字i的格子个数就是 di

   dmi 就是用 m 种颜色染di个格子,每种颜色只能染一个格子,每个格子可以染多种颜色的方案数。

  因为染了颜色的格子很少,所以枚举写了数字 i 的格子中染了颜色的格子数量k,如果染色的格子全在前面,方案数就是 (n2jk)×S(m,k)×k! ,贡献就是 ak+1i 。后面有就是 (n2jk)×S(m,k+1)×(k+1)!

  额外选一个数就把 m 改成2m

   fi,j,gi,j 的意义和以前类似,只不过改成了染色的格子个数是 j

  最后枚举染色的格子个数i,没染色的格子可以随便填数,要乘上 (ni=1ai)n2i

  时间复杂度: O(n2m)

  把组合数什么的全部拆开后就能得到一个比较漂亮的式子(其中 F,G,A,B 都是多项式):

FiGi=Fi1A=Gi1A+Fi1B

  可以用分治FFT优化。

  时间复杂度: O(nmlog2n)

代码

暴力

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
    if(a>b)
        swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
int rd()
{
    int s=0,c;
    while((c=getchar())<'0'||c>'9');
    do
    {
        s=s*10+c-'0';
    }
    while((c=getchar())>='0'&&c<='9');
    return s;
}
int upmin(int &a,int b)
{
    if(b<a)
    {
        a=b;
        return 1;
    }
    return 0;
}
int upmax(int &a,int b)
{
    if(b>a)
    {
        a=b;
        return 1;
    }
    return 0;
}
const ll p=998244353;
ll h[62][62];
ll f[2][60010];
ll g[2][60010];
ll a[30010];
ll d[30010][62];
ll fac[30010];
ll ifac[30010];
ll inv[30010];
void add(ll &a,ll b)
{
    a=(a+b)%p;
}
ll fp(ll a,ll b)
{
    ll s=1;
    for(;b;b>>=1,a=a*a%p)
        if(b&1)
            s=s*a%p;
    return s;
}
ll getc(int x,int y)
{
    if(x<y)
        return 0;
    return fac[x]*ifac[y]%p*ifac[x-y]%p;
}
ll s1[60010][62];
ll s2[60010][62];
ll s3[60010][62];
ll s4[60010][62];
int main()
{
    freopen("a.in","r",stdin);
    freopen("a2.out","w",stdout);
    int n,m;
    scanf("%d%d",&n,&m);
    h[0][0]=1;
    int i,j,k;
    fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
    for(i=2;i<=2*m||i<=n;i++)
    {
        inv[i]=-p/i*inv[p%i]%p;
        fac[i]=fac[i-1]*i%p;
        ifac[i]=ifac[i-1]*inv[i]%p;
    }
    for(i=1;i<=2*m;i++)
        for(j=1;j<=2*m;j++)
            h[i][j]=(h[i-1][j-1]+h[i-1][j]*j)%p;
    for(i=0;i<=2*m;i++)
        for(j=0;j<=2*m;j++)
            h[i][j]=h[i][j]*fac[j]%p;
    for(i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        d[i][0]=1;
        for(j=1;j<=2*m;j++)
            d[i][j]=d[i][j-1]*a[i]%p;
    }
    for(i=1;i<=n;i++)
        for(j=0;j<=2*m;j++)
        {
            s1[i][j]=ifac[j]*d[i][j]%p*((h[m][j]+h[m][j+1])%p)%p;
            s2[i][j]=ifac[j]*d[i][j]%p*((h[2*m][j]+h[2*m][j+1])%p)%p;
        }
    f[0][0]=1;
    int t=0;
    for(i=0;i<n;i++)
    {
        t^=1;
        memset(f[t],0,sizeof f[t]);
        memset(g[t],0,sizeof g[t]);
        for(j=0;j<=n-2;j++)
        {
            for(k=0;k<=m&&k<=n-2-j;k++)
            {
                add(f[t][j+k],f[t^1][j]*s1[i+1][k]);
                add(g[t][j+k],g[t^1][j]*s1[i+1][k]);
            }
            for(k=0;k<=2*m&&k<=n-2-j;k++)
                add(g[t][j+k],f[t^1][j]*s2[i+1][k]);
        }
    }
    ll ans=0,s=0;
    for(i=1;i<=n;i++)
        s=(s+a[i])%p;
    for(i=0;i<=n-2;i++)
        ans=(ans+g[t][i]*ifac[n-2-i]%p*fp(s,n-2-i))%p;
    for(i=1;i<=n;i++)
        ans=ans*a[i]%p;
    ans=ans*fac[n-2]%p;
    ans=(ans+p)%p;
    printf("%lld\n",ans);
    return 0;
}

正解

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
    if(a>b)
        swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
    char str[100];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
    sprintf(str,"%s.out",s);
    freopen(str,"w",stdout);
#endif
}
int rd()
{
    int s=0,c;
    while((c=getchar())<'0'||c>'9');
    do
    {
        s=s*10+c-'0';
    }
    while((c=getchar())>='0'&&c<='9');
    return s;
}
int upmin(int &a,int b)
{
    if(b<a)
    {
        a=b;
        return 1;
    }
    return 0;
}
int upmax(int &a,int b)
{
    if(b>a)
    {
        a=b;
        return 1;
    }
    return 0;
}
const int p=998244353;
int fp(ll a,ll b)
{
    ll s=1;
    for(;b;b>>=1,a=1ll*a*a%p)
        if(b&1)
            s=1ll*s*a%p;
    return s;
}
namespace ntt
{
    const int g=3;
    int w1[150000];
    int w2[150000];
    int rev[150000];
    int n;
    void init(int m)
    {
        n=m;
        int i;
        for(i=2;i<=n;i<<=1)
        {
            w1[i]=fp(g,(p-1)/i);
            w2[i]=fp(w1[i],p-2);
        }
        rev[0]=0;
        for(i=1;i<n;i++)
            rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
    }
    void ntt(int *a,int t)
    {
        int u,v,w,wn;
        int i,j,k;
        for(i=0;i<n;i++)
            if(rev[i]<i)
                swap(a[i],a[rev[i]]);
        for(i=2;i<=n;i<<=1)
        {
            wn=(t==1?w1[i]:w2[i]);
            for(j=0;j<n;j+=i)
            {
                w=1;
                for(k=j;k<j+i/2;k++)
                {
                    u=a[k];
                    v=1ll*a[k+i/2]*w%p;
                    a[k]=(u+v)%p;
                    a[k+i/2]=(u-v)%p;
                    w=1ll*w*wn%p;
                }
            }
        }
        if(t==-1)
        {
            int inv=fp(n,p-2);
            for(i=0;i<n;i++)
                a[i]=1ll*a[i]*inv%p;
        }
    }
    void copy(int *a,const vector<int> &b,int len)
    {
        int i;
        for(i=0;i<=len;i++)
            a[i]=b[i];
        for(i=len+1;i<n;i++)
            a[i]=0;
    }
    vector<int> back(int *a,int len)
    {
        vector<int> s;
        int i;
        for(i=0;i<=len;i++)
            s.push_back(a[i]);
        return s;
    }
}
int n,m;
int h[62][62];
int f[2][60010];
int g[2][60010];
int a[30010];
int d[30010][62];
int fac[30010];
int ifac[30010];
int inv[30010];
void add(int &a,int b)
{
    a=(a+b)%p;
}
int s1[60010][62];
int s2[60010][62];
auto gao(vector<int> &a,vector<int> &b,vector<int> &c,vector<int> &d)
{
    static int a1[150000],a2[150000],a3[150000],a4[150000],s1[150000],s2[150000];
    int len=1;
    int n1=a.size()-1;
    int n2=b.size()-1;
    int n3=c.size()-1;
    int n4=d.size()-1;
    while(len<=2*n2||len<=2*n4)
        len<<=1;
    ntt::init(len);
    ntt::copy(a1,a,n1);
    ntt::copy(a2,b,n2);
    ntt::copy(a3,c,n3);
    ntt::copy(a4,d,n4);
    ntt::ntt(a1,1);
    ntt::ntt(a2,1);
    ntt::ntt(a3,1);
    ntt::ntt(a4,1);
    int i;
    for(i=0;i<len;i++)
    {
        s1[i]=1ll*a1[i]*a3[i]%p;
        s2[i]=(1ll*a1[i]*a4[i]+1ll*a2[i]*a3[i])%p;
    }
    ntt::ntt(s1,-1);
    ntt::ntt(s2,-1);
    return make_pair(ntt::back(s1,min(n-2,n1+n3)),ntt::back(s2,min(n-2,max(n1+n4,n2+n3))));
}
auto solve(int l,int r)
{
    if(l==r)
    {
        vector<int> a(m+1),b(2*m+1);
        int i;
        for(i=0;i<=2*m;i++)
        {
            if(i<=m)
                a[i]=s1[l][i];
            b[i]=s2[l][i];
        }
        return make_pair(a,b);
    }
    int mid=(l+r)>>1;
    auto L=solve(l,mid);
    auto R=solve(mid+1,r);
    return gao(L.first,L.second,R.first,R.second);
}
int main()
{
    open("a");
    scanf("%d%d",&n,&m);
    h[0][0]=1;
    int i,j,k;
    fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
    for(i=2;i<=2*m||i<=n;i++)
    {
        inv[i]=1ll*-p/i*inv[p%i]%p;
        fac[i]=1ll*fac[i-1]*i%p;
        ifac[i]=1ll*ifac[i-1]*inv[i]%p;
    }
    for(i=1;i<=2*m;i++)
        for(j=1;j<=2*m;j++)
            h[i][j]=(h[i-1][j-1]+1ll*h[i-1][j]*j)%p;
    for(i=0;i<=2*m;i++)
        for(j=0;j<=2*m;j++)
            h[i][j]=1ll*h[i][j]*fac[j]%p;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        d[i][0]=1;
        for(j=1;j<=2*m;j++)
            d[i][j]=1ll*d[i][j-1]*a[i]%p;
    }
    for(i=1;i<=n;i++)
        for(j=0;j<=2*m;j++)
        {
            s1[i][j]=1ll*ifac[j]*d[i][j]%p*((1ll*h[m][j]+h[m][j+1])%p)%p;
            s2[i][j]=1ll*ifac[j]*d[i][j]%p*((1ll*h[2*m][j]+h[2*m][j+1])%p)%p;
        }
//  f[0][0]=1;
    int t=0;
//  for(i=0;i<n;i++)
//  {
//      t^=1;
//      memset(f[t],0,sizeof f[t]);
//      memset(g[t],0,sizeof g[t]);
//      for(j=0;j<=n-2;j++)
//      {
//          for(k=0;k<=m;k++)
//          {
//              add(f[t][j+k],f[t^1][j]*s1[i+1][k]);
//              add(g[t][j+k],g[t^1][j]*s1[i+1][k]);
//          }
//          for(k=0;k<=2*m;k++)
//              add(g[t][j+k],f[t^1][j]*s2[i+1][k]);
//      }
//  }
    auto dp=solve(1,n);
    int ans=0,s=0;
    for(i=1;i<=n;i++)
        s=(s+a[i])%p;
    for(i=0;i<=n-2;i++)
//      ans=(ans+g[t][i]*ifac[n-2-i]%p*fp(s,n-2-i))%p;
        ans=(ans+1ll*dp.second[i]*ifac[n-2-i]%p*fp(s,n-2-i))%p;
    for(i=1;i<=n;i++)
        ans=1ll*ans*a[i]%p;
    ans=1ll*ans*fac[n-2]%p;
    ans=(ans+p)%p;
    printf("%d\n",ans);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值