代数重建技术在图像重建中的应用与解析
1. 代数重建技术概述
代数重建技术(ARTs)是第二大受欢迎的重建方法家族,它属于利用有限级数展开的更广泛方法学。这类方法的特点是在重建过程开始就进行简化,假设重建图像由有限个元素组成,在引入离散算法形式之前就进行离散化。
在概念阶段,将感兴趣区域划分为相同大小的块,每个块具有均匀的辐射衰减系数,其几何中心对应重建数字图像的一个像素。每个块在图像中水平由坐标 (i = 1, \ldots, I) 标识,垂直由 (j = 1, \ldots, J) 标识,块内的均匀衰减系数用 (l_{ij}) 表示。
代数算法的一个重要特性是使我们独立于投影系统的几何形状。这里假设使用平行束系统进行投影,每个投影值用离散形式的投影函数表示:
(\hat{p} p(l, w) \approx p_p(l\Delta_s^p, w\Delta {\alpha}^p))
其中 (l) 是矩阵中的探测器编号,(w) 是投影编号,(\Delta_s^p) 是屏幕上各个探测器之间的距离,(\Delta_{\alpha}^p) 是每次投影后管 - 屏装置旋转的角度。
2. 代数图像重建问题的公式化
在考虑代数图像重建问题之前,先回顾离散形式的 Radon 变换:
(\hat{p}_p(l, w) \approx R(l(x, y)))
代数方法假设给定的衰减系数分布 (l(x, y)) 可以近似表示为基函数和常数系数的有限线性组合:
(l(x, y) \approx \hat{l}(i, j) = \sum_{i = 1}^{I} \sum_{j
超级会员免费看
订阅专栏 解锁全文
825

被折叠的 条评论
为什么被折叠?



