姿态表示全解析:从基础变换到复杂映射
1. 引言
在处理空间中的姿态表示问题时,我们常常需要考虑不同维度空间之间的变换。本文将详细介绍二维姿态表示的各种情况,包括无旋转变换、旋转参数化、带旋转和均匀缩放的变换、仿射变换、带旋转和非均匀缩放的变换以及一般单应性变换等,并给出相应的估计方法。
2. 相关符号说明
| 符号 | 含义 |
|---|---|
| n | 空间维度(通常 n = 2 或 n = 3) |
| In | n×n 单位矩阵 |
| tn | n×1 平移向量 |
| Rn | n×n 旋转矩阵,满足 $R_n^TR_n = I_n$ |
| s | 均匀缩放因子 |
| Dn | 非均匀缩放矩阵,$D_n = diag(s_1, \cdots, s_n)$ |
| An | n×n 线性变换矩阵 |
| vn | n×1 透视畸变向量 |
超级会员免费看
订阅专栏 解锁全文
1850

被折叠的 条评论
为什么被折叠?



