概率论与数理统计(二)

本文主要讲一下如何对随机事件求概率这个问题,这个问题听起来是很简单的,但实际上这里面还是有一点点东西的。

三大结构

当我们讨论某一随机事件的概率时,我们一般是在一个框架下讨论的,这个框架包含三个结构:样本空间(sample space),事件(event)和几率测度(probability measure)。

  • sample space:记作 Ω \Omega Ω,样本空间,即某一随机现象发生的所有可能取值集合。
  • event:sample space的任一子集叫做event,即事件。
  • probability measure:给定一个event,probability measure就是测量该event发生的概率。

接下来用一个映射来表达这三者的关系。
P : 2 Ω → [ 0 , 1 ] ( 1 ) P:2^\Omega \rightarrow[0,1] \quad\quad (1) P2Ω[0,1](1)

离散的样本空间

根据 Ω \Omega Ω这一集合所含元素为countable 和 uncountable这两种情况,我们又可以将样本空间分为离散的样本空间和连续的样本空间。
什么是countable呢? 就是集合内的元素是finite,如{1,2,3,4,5,6},或者集合内的元素是infinite,但是countable,比如自然数集合 N \mathcal{N} N
根据公式(1),我们只需要定义P这个映射就好了,可是如果 Ω \Omega Ω的元素很多的话,我们是定义P是非常麻烦的(我们需要为 2 Ω 2^\Omega 2Ω个事件定义其概率)。我们前面"概率论与数理统计(一)"讲到了概率的三大公理,根据第三个加法公理,我们只需要定义这样的映射p就好了(即只为每个基本事件定义概率,然后根据加法公理去计算若干个事件合在一起的新事件的概率):
p : Ω → [ 0 , 1 ] ( 2 ) p:\Omega \rightarrow [0,1] \quad\quad (2) pΩ[0,1](2)

我们可以回想一下古典概率,其局限在于:(1) 不能处理infinite的情况。(2)若每个基本事件的概率不同,古典概率也无法使用。而使用我们现在采用的框架就能解决上述的两个问题。

连续的样本空间

可以明显看出来离散情况下的做法并不适用与连续情况。
连续的情况讲起来有点麻烦,暂时先不讲了。

总结

通过本文,我们学习了概率论的基本框架,该框架包含三个主要的结构:样本空间,事件,几率测度。针对样本空间离散和连续的情况,本文做了不同的讲解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值