以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题。可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类。
不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与CrossEntropyLoss是不同的。下面我详细讲一下哪里不同。
1. 使用nn.BCELoss需要在该层前面加上Sigmoid函数。
公式如下:
l
o
s
s
(
X
i
,
y
i
)
=
−
w
i
[
y
i
l
o
g
x
i
+
(
1
−
y
i
)
l
o
g
(
1
−
x
i
)
]
loss(X_{i},y_{i}) = -w_{i}[y_{i}logx_{i} + (1-y_{i})log(1-x_{i})]
loss(Xi,yi)=−wi[yilogxi+(1−yi)log(1−xi)]
2. 使用nn.CrossEntropyLoss会自动加上Sofrmax层。
公式如下:
l
o
s
s
(
X
i
,
y
i
)
=
−
w
l
a
b
e
l
l
o
g
e
x
l
a
b
e
l
∑
j
=
1
N
e
x
j
loss(X_{i},y_{i}) = -w_{label}log\frac{e^{x_{label}}}{\sum_{j=1}^{N}e^{x_{j}}}
loss(Xi,yi)=−wlabellog∑j=1Nexjexlabel
可以看出,这两个计算损失的函数使用的激活函数不同,故而最后的计算公式不同。