import pandas as pd
'''
1.
数据类型 新建方法
csv和txt pd.to_csv
excel pd.to_excel
sql pd.to_sql
'''
'''
1.读取txt和csv文件:
read_csv:默认文件中用,分割
read_table:默认文件用\t分割
2.读取文件中的参数
sep:规定用哪个符号作为分割
header=None:代表没有表头,用names规定表头
names:必须写成列表形式
index_col=''或者index_col=[,,,,]:代表单独选取某一列
skiprows:跳过某一行或者几行
encoding='utf-8'一般使用
nrows从文章开始读取的条数
'''
path='D:\File\pandas_practice_file\读取文件.txt'
data=pd.read_table(path,sep=',',header= None,names=['性别'],encoding='utf-8',nrows=3)
print(data)
print(data.columns)
print(data.index)
print(data.dtypes)
'''
'''
import pymysql
con=pymysql.connect(user='root',password='root',host='localhost',database='test',charset='utf8')
data=pd.read_sql('select * from student',con)
print(data)
'''
读取与修改excel文件
'''
path='数据结构.xlsx'
data=pd.read_excel(path,header=None,names=['姓名','年龄','手机号','地址','出生日期'],skiprows=[2,3,6])#读取excel文件的一部分
print(data)
data.to_excel(path)#写回文件
print(pd.read_excel(path,header=None,names=['姓名','年龄','手机号','地址','出生日期']))#展示修改后的文件
Python_pandas_文件读取与修改系列
于 2023-09-19 20:53:10 首次发布