基于脑电图信号的机器学习分类器在记忆评估中的性能评估
1. 引言
脑电图(EEG)以电生理信号的形式记录大脑活动。对这些信号的分析有助于开发能够与人类大脑进行通信的设备,从而在日常生活中提供更好的便利。这些设备需要脑机接口(BCI)来完成其任务。
EEG 能够让我们深入了解大脑在不同刺激下的功能,这些刺激可以是视觉、听觉,或者是视听结合(以多媒体形式呈现)。通过 EEG,我们可以了解大脑的状态、注意力表现以及大脑的健康状况(通过记忆力来衡量)。此外,EEG 不仅技术成熟,而且价格低廉、非侵入性,这使得它成为评估不同大脑功能的有前途的工具。与其他脑成像方式(如脑磁图(MEG)和功能磁共振成像(fMRI))相比,EEG 更适合日常使用。
物联网(IoT)在人类生活的几乎各个方面迅速发展,推动了智能医疗系统的发展,加强了远程医患沟通,提高了生活质量。近年来,从事 BCI 研究的社区已将 EEG 应用于支持物联网的基础设施中,以实现闭锁综合征(LIS)患者与其辅助设备(如轮椅或语音辅助设备)之间的实时认知交互。
大脑分为不同的脑叶,即额叶、顶叶、枕叶和颞叶,每个脑叶都有专门的功能:
- 额叶 :控制记忆、思维能力、决策、推理、冲动控制、情绪和语言表达质量。如果这部分受损,可能会影响记忆、情绪和语言。
- 顶叶 :处理来自身体不同部位的感觉信息。如果该部位受损,可能会出现识别和定位身体部位的困难。
- 枕叶 :处理视觉信息,受损后可能导致色盲。
- 颞叶 :负责声音和语言,特别是听
超级会员免费看
订阅专栏 解锁全文
29

被折叠的 条评论
为什么被折叠?



