DLC#
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
58、机器人领域的前沿探索:进化机器人学与双足行走
本文探讨了进化机器人学在人形机器人双足行走中的前沿应用,分析了当前研究的背景与挑战,重点介绍了基于生物启发的自下而上设计方法。研究结合小世界网络与脉冲神经网络,利用SimSpark模拟器和CUDA并行计算技术,构建亚符号化连接主义系统,并通过适应度函数引导进化优化。文章还梳理了实现复杂行为的关键路径,并展望了未来在高级认知、合成生物学及多机器人协作方向的发展潜力。原创 2025-10-20 05:06:40 · 29 阅读 · 0 评论 -
57、集体行为控制器的渐进式设计与模块化强化学习技术
本文探讨了两种多机器人集体行为控制的方法:改进的模块化强化学习技术和基于进化的神经网络多级行为架构设计方法。前者通过结合约束模块训练与否决系统,在多机器人软管运输任务中实现了高效学习;后者采用分层进化策略,逐步构建低级与高级行为控制器,支持复杂行为的渐进式生成。文章详细分析了控制器结构、进化过程及实际应用示例,并展望了未来在同步移动优化、随机环境适应以及工业与纳米机器人领域的扩展潜力。原创 2025-10-19 13:04:26 · 16 阅读 · 0 评论 -
56、迈向链接多组件机器人系统的并发Q学习
本文提出了一种面向链接多组件机器人系统(L-MCRS)的模块化并发Q学习方法,以解决传统控制技术在非线性动力学和物理约束下的局限性。通过引入目标模块与约束模块的分工机制,并采用基于否决的动作选择策略,有效提升了系统在软管运输任务中的成功率。实验表明,该方法在处理复杂约束方面优于传统贪心策略,但也面临状态空间爆炸和学习效率下降等挑战。未来工作将聚焦于优化状态-动作表示、实际机器人部署及多机器人协作策略的学习。原创 2025-10-18 14:01:47 · 15 阅读 · 0 评论 -
55、图像分割与软管运输控制的研究进展
本文综述了图像分割与基于Q-学习的软管运输控制两项关键技术的研究进展。在图像分割方面,提出了一种结合强度与色度感知的混合距离模型,并采用区域合并与预标记策略实现高效分割,在多种图像上表现出良好的适应性与处理速度。在软管运输控制方面,采用Q-学习方法对单机器人系统进行控制训练,通过系统化实验优化状态模型、奖励机制与离散化参数,显著提升了任务成功率。研究进一步探讨了二者在机器人环境感知与决策控制中的关联性,展望了其在工业自动化、物流配送和医疗等领域的融合应用前景,并提出了参数自动估计与算法优化等未来方向。原创 2025-10-17 11:18:18 · 25 阅读 · 0 评论 -
54、牙科铣削参数优化与图像分割的混合系统研究
本文研究了牙科铣削参数优化与图像分割的混合系统。在牙科制造方面,结合遗传算法(GA)与人工神经网络(ANN)模型,优化铣削过程中的时间误差,提升生产效率与质量;通过PCA和CMLHL分析识别关键影响变量,并利用GA搜索最优工艺参数。在图像分割方面,提出一种基于二色反射模型(DRM)和球面坐标的混合颜色距离方法,有效融合色度与强度信息,提升复杂光照条件下的边缘检测与分割准确性。未来方向包括引入温度与侵蚀因素分析、开发自适应优化算法,以及结合深度学习提升图像分割性能。原创 2025-10-16 14:23:41 · 27 阅读 · 0 评论 -
53、软计算在临床神经学与牙科铣削参数优化中的应用
本文探讨了软计算技术在临床神经学与牙科铣削参数优化中的应用。在临床神经学中,多层感知器神经网络(MLPNN)用于原发性全身性癫痫的子类别分类,总体准确率达84.4%,显著提升诊断准确性。在牙科制造领域,结合人工神经网络(ANN)与遗传算法(GA)的混合智能系统通过数据特征选择、模型构建与参数优化,有效降低制造时间误差,提高生产效率。文章对比了传统方法与软计算方法的优势,分析了实际应用中的挑战及解决方案,并展望了多模态数据融合、个性化医疗、智能化制造等未来发展趋势,展示了软计算在医疗与工业领域的巨大潜力。原创 2025-10-15 16:49:59 · 24 阅读 · 0 评论 -
52、护理物流活动与临床神经学中的软计算应用探索
本文探讨了软计算在护理物流活动与临床神经学中的应用。在护理物流方面,基于LVQ-SOM网络的混合分类模型可有效评估患者需求,优化护士资源配置和护理时间成本;在临床神经学方面,软计算技术如模糊逻辑、人工神经网络和进化计算被广泛应用于EMG信号分类、癫痫、帕金森病、阿尔茨海默病等疾病的诊断与分析,显著提升了诊断准确性。文章还总结了软计算的优势与挑战,并展望了多模态数据融合、个性化医疗、智能医疗设备及跨学科研究等未来发展方向。原创 2025-10-14 12:35:22 · 16 阅读 · 0 评论 -
51、医疗领域的混合人工智能系统与患者分类研究
本文探讨了混合人工智能系统在医疗领域的应用,重点分析了远程监测中的统计与规则分类器结合的优势,以及基于LVQ-SOM的混合神经网络在患者分类和护理人力资源预测中的实践。通过对比不同分类器性能及实际数据验证,展示了混合模型在降低假阴性率和优化护士配置方面的潜力。研究还总结了现有患者分类方法的演进,并提出了未来在模型优化、数据拓展和实际推广应用方向上的展望,旨在提升医疗服务效率与质量。原创 2025-10-13 14:00:03 · 16 阅读 · 0 评论 -
50、生产调度与远程心脏患者监测的技术解析
本文深入解析了生产调度的面向对象模型与远程心脏患者监测的混合人工智能系统。生产调度模型通过技术流程规划、资源调度与类结构设计,提升决策效率并支持专家系统开发,助力制造业智能化升级与供应链协同优化。远程监测系统结合规则与统计分类器,利用移动通信与AI技术实现患者数据实时分析,改善医疗服务质量,降低医疗成本,并推动个性化医疗服务发展。两大技术方案分别在工业自动化与智慧医疗领域展现出广阔应用前景。原创 2025-10-12 14:49:49 · 15 阅读 · 0 评论 -
49、生产系统集成中的数据交换与面向对象模型应用
本文探讨了生产系统集成中的两个核心议题:SWZ与PROEDIMS系统间基于XML和XSLT的数据交换模块实现,以及CAD/CAPP/CAP系统集成中面向对象模型的应用。通过构建结构化的XML Schema和自动化转换流程,实现了异构系统间高效、准确的数据流通;同时,采用面向对象分析与设计方法,建立了技术知识库(TKB)和调度知识库(SKB),支持多变体工艺规划与动态调度响应,提升了系统的灵活性与智能化水平。文章还分析了系统集成的优势与挑战,并展望了生产系统向智能化、自动化和网络化发展的未来趋势。原创 2025-10-11 11:18:11 · 17 阅读 · 0 评论 -
48、生产系统风险评估与生产准备和订单验证系统集成
本文探讨了生产系统风险评估与生产准备及订单验证系统集成的关键方法与应用。首先分析了基于并行可靠性结构的生产系统风险评估模型,并以某国际公司为例,通过转换因子和风险计算公式评估各产品线的风险水平。随后介绍了SWZ与PROEDIMS系统的集成方案,重点阐述SWZ系统中基于图论的死锁保护机制,包括封闭循环识别、进程倍数确定和实现顺序规划。最后总结了系统集成对提升中小企业决策效率、降低成本和增强竞争力的重要意义,并展望未来在人工智能与供应链协同方面的扩展潜力。原创 2025-10-10 16:10:01 · 18 阅读 · 0 评论 -
47、软件代理与生产系统风险评估综合解析
本文综合解析了软件代理与生产系统风险评估的理论发展与应用前景。文章首先介绍了软件代理的基本特征、优势与挑战,并分析了其在制造过程模拟中的应用;随后提出了基于一般可靠性理论的生产系统风险评估方法,重点探讨了并行结构下的风险计算与风险接受系数;进一步阐述了数据交换代理系统的概念及其在提升模拟精度和效率方面的优势;最后展望了软件代理与生产系统风险评估的协同发展路径,强调二者在数据收集、模型构建、风险评估与决策支持等方面的深度融合,为智能制造环境下的系统优化与风险管理提供了新思路。原创 2025-10-09 13:46:56 · 23 阅读 · 0 评论 -
46、技术领域的智能系统与模型构建
本文探讨了基于规则的专家系统在工艺规划中的应用以及数据交换代理系统在制造过程模拟模型自动构建中的作用。通过层次化知识库和推理引擎,专家系统提升了工艺规划的准确性与效率;数据交换代理系统则显著缩短了模拟建模时间并提高了精度。结合实际案例分析,展示了两类系统在机械加工和汽车制造企业中的成功应用,并对比了其功能特点与效益。未来,技术融合、人工智能引入及行业标准制定将推动制造业智能化发展。原创 2025-10-08 09:14:58 · 10 阅读 · 0 评论 -
45、基于聚类集成的垃圾邮件过滤
本文提出了一种基于聚类集成的混合智能垃圾邮件过滤模型,结合无监督学习(自组织映射SOM)与监督学习(朴素贝叶斯),通过SOM对数据空间进行自动划分和聚类分析,利用U矩阵、P矩阵和U*矩阵等度量方法优化集成结构,提升分类准确性。实验结果表明,该模型在复杂垃圾邮件数据集上显著优于传统Bagging和k均值方法,尤其在处理大规模数据时错误率更低。模型具备良好的可视化能力、可扩展性和适应性,适用于个人、企业及协作式邮件系统。未来工作将探索多分类器训练、在线学习与高级特征工程以进一步提升性能。原创 2025-10-07 13:41:12 · 14 阅读 · 0 评论 -
44、开环 PID 控制器设计的混合智能通用决策系统
本文提出了一种用于开环PID控制器参数调优的混合智能通用决策系统,旨在解决工业中大量PID控制器调优不佳的问题。通过构建基于概念模型的通用决策框架,整合现有规则并利用数据挖掘技术(如J48决策树)推导新规则,实现了对不同系统响应特征下的最优调优方法选择。该方法在传递函数未知或不匹配基准系统的严苛条件下进行了验证,36个测试案例中成功率达86.1%。此外,在小型陶瓷炉上的实证应用表明,该系统能有效指导实际工程中的PID参数整定,具有良好的实用性与推广价值。原创 2025-10-06 12:54:42 · 16 阅读 · 0 评论 -
43、医学图像分析中的特征提取与分类技术
本文探讨了医学图像分析中的两种关键技术:基于变形向量的阿尔茨海默病(AD)检测特征提取方法,以及用于腹主动脉瘤(AAA)腔内修复术(EVAR)后生存预测的混合系统。前者通过非线性配准和相关性分析提高分类准确性,后者结合管腔分割、多阶段图像配准与人工神经网络实现患者预后预测。文章还对比了两种技术的特点,深入解析了关键算法,并讨论了实际应用中的挑战与未来发展方向,包括数据集扩展、多模态融合、模型可解释性及与其他AI技术的结合,展现了医学图像分析在临床决策支持中的巨大潜力。原创 2025-10-05 13:00:25 · 22 阅读 · 0 评论 -
42、热循环效率分析与阿尔茨海默病检测研究
本文探讨了热循环效率分析与阿尔茨海默病检测研究的原理、方法及应用。在热循环效率分析中,采用前馈神经网络对基于NIST数据库的热力学数据进行建模,通过反向传播算法训练模型,实现对效率的预测与优化;在阿尔茨海默病检测研究中,利用OASIS数据库的MRI数据,通过非线性配准提取变形向量,并基于位移大小(DM)和雅可比行列式(JD)进行特征选择,结合SVM分类器实现疾病识别。两种研究均涉及数据预处理、特征选择与机器学习模型应用,虽领域不同但方法具有共通性。文章进一步比较了两种研究的异同,分析其优缺点,并提出未来可朝原创 2025-10-04 14:05:51 · 19 阅读 · 0 评论 -
41、定量关联规则评估与热力循环设计策略解析
本文深入探讨了定量关联规则评估与热力循环设计策略。在数据挖掘方面,分析了确定因子、杠杆率等关键评估指标,并通过相关系数和主成分分析揭示了不同度量间的关系,提出conf、gain、supRule和lev作为多目标优化的有效目标。在工业设计方面,介绍了基于顺序功能图(SFC)的热力循环设计方法,结合NIST数据库与规则系统,实现高效、确定性的循环分析与优化。文章为数据挖掘与过程工程领域的研究与应用提供了理论支持与实践指导。原创 2025-10-03 10:32:28 · 18 阅读 · 0 评论 -
40、激光雷达数据两种回归方法对比及关联规则分析
本文探讨了激光雷达数据处理中的两种回归方法对比,重点比较了经典逐步特征选择与基于遗传算法的特征选择在生物量估计中的性能差异,并引入M5P回归树与多元线性回归(MLR)的对比分析。同时,文章还深入研究了关联规则挖掘中的多种有趣性度量(如支持度、置信度、提升度等),分析其在数据挖掘中的应用价值。通过实验验证和统计检验,结果表明遗传特征选择显著提升了模型拟合效果,而M5P回归树在部分指标上优于MLR。最后展望了关联规则在多领域中的潜在应用及与进化算法结合的优化方向。原创 2025-10-02 14:05:56 · 16 阅读 · 0 评论 -
39、进化蛋白质接触图预测与LiDAR数据回归方法比较研究
本博客研究了进化算法在蛋白质接触图预测中的应用,利用氨基酸的疏水性、极性、电荷和残基大小等属性生成可解释的预测规则,并通过10折交叉验证评估模型性能,结果显示召回率随规则数量增加而提升。同时,对比了LiDAR数据中不同特征选择(逐步选择 vs 遗传选择)与回归方法(MLR vs M5P)在森林生物量估计中的表现,发现遗传选择结合M5P回归树具有最优预测精度。两项研究分别在生物信息学与遥感生态领域展示了智能算法的应用潜力。原创 2025-10-01 13:21:40 · 20 阅读 · 0 评论 -
38、数据挖掘在文本风格分析与蛋白质结构预测中的应用
本文探讨了数据挖掘技术在计算文体学与蛋白质结构预测两个领域的应用。在计算文体学中,基于优势的粗糙集方法(DRSA)通过属性约简与规则筛选实现高效特征选择,提升了作者风格识别的准确率;在蛋白质结构预测中,提出一种基于氨基酸物理化学属性的进化算法,用于残基-残基接触图的从头预测,生成可解释性强的规则,有助于理解蛋白质折叠机制。两种方法均展示了数据驱动算法在高维复杂问题中的有效性,并通过实验验证了其性能优势。文章进一步对比分析了两种技术路径,提出了算法优化、属性挖掘和跨领域融合等未来研究方向。原创 2025-09-30 14:18:17 · 16 阅读 · 0 评论 -
37、利用计算智能技术预测地震
本文探讨了利用计算智能技术进行地震预测的方法,重点介绍了定量关联规则(QAR)和M5P回归算法在地震时间序列数据中的应用。通过分析伊比利亚半岛特定区域的地震数据,挖掘出不同震级地震发生前的时间间隔、b值变化及前次震级等关键模式。QAR方法以直观、可解释的规则形式揭示了地震前兆特征,而M5P算法构建的回归树则综合考虑多因素影响,具备较强的预测能力。研究结果表明,b值和时间间隔对地震发生具有显著影响,两种技术均展现出在地震预警和风险评估中的应用潜力。尽管面临数据质量与地震随机性等挑战,未来通过数据融合与算法优化原创 2025-09-29 10:32:37 · 15 阅读 · 0 评论 -
36、基于KEGG的基因调控网络验证框架
本文提出了一种基于KEGG数据库的基因调控网络(GRN)验证框架,通过将输入网络中的基因-基因相互作用与KEGG中存储的生物代谢途径进行比较,利用覆盖率、精度、召回率、平衡点和F-测量值等定量指标评估网络的可靠性。该方法在真实生物网络和随机生成网络上的实验表明,能够有效区分具有生物学意义和无意义的网络结构,验证了其评估能力。同时,文章也指出KEGG信息可能存在的局限性,并展望未来整合Reactome、Enzyme等多源数据库以提升验证精度,考虑间接关系并优化算法性能,为基因调控网络的研究提供了有力支持。原创 2025-09-28 11:43:43 · 19 阅读 · 0 评论 -
35、数据挖掘算法的性能比较与创新:IPADECS与GAR - SD的研究
本文探讨了数据挖掘中的两类重要任务:分类与子群发现。重点分析了IPADECS和GAR-SD两种算法的性能表现。IPADECS在分类任务中相较于IPADE显著提升了准确率,尽管缩减率略有下降;GAR-SD作为多目标进化算法,在子群发现任务中无需预离散化即可处理连续与离散属性,在显著性、支持度和置信度方面均优于APRIORI-SD、CN2-SD等主流算法。实验结果表明,这两种算法在各自领域具有优越性能和广泛应用前景。未来研究可聚焦于算法优化、跨领域应用及与其他技术的融合。原创 2025-09-27 10:42:14 · 14 阅读 · 0 评论 -
34、增强 IPADE 算法:不同个体编码的创新应用
本文提出了一种增强的IPADE算法——IPADECS,通过引入每个个体编码完整原型生成集(PGS)的新编码方案,提升了差分进化算法在分类任务中的优化能力。与传统IPADE相比,IPADECS在保持高效数据约简的同时显著提高了分类准确率。实验基于20个KEEL数据集,采用十折交叉验证,结果表明IPADECS在准确率、约简率和计算效率方面均优于原算法,展现出更优的综合性能。未来工作将聚焦于参数优化、应用拓展及与其他算法的融合。原创 2025-09-26 15:44:17 · 13 阅读 · 0 评论 -
33、时间序列分类中相似性度量的融合
本文研究了时间序列分类中多种相似性度量的融合方法,提出了一种基于回归模型的框架来组合欧几里得距离、DTW、DFT、小波变换等基本相似性度量,以提升分类准确性。实验在35个真实世界数据集上进行,结果表明,在复杂场景下,融合相似性度量显著优于单一方法,且从未被基线显著超越。文章还探讨了未来研究方向,包括扩展至其他数据类型、优化大规模数据采样策略、探索更多回归模型以及智能选择度量方式。原创 2025-09-25 14:15:28 · 17 阅读 · 0 评论 -
32、多级分类器中带模糊对象特征观测的成本敏感分类
本文研究了多级分类器中带模糊对象特征观测的成本敏感分类问题,重点比较了非模糊与模糊观测下的特征获取成本和误分类成本。基于贝叶斯分层分类器框架,采用零一损失函数,提出了局部最优策略下的期望总成本模型,并分析了模糊观测因参数λ导致的额外成本及其对分类性能的影响。通过路径成本累加方法,量化了两种观测方式的总成本差异,为实际应用中的分类决策提供了成本评估依据。原创 2025-09-24 16:43:04 · 16 阅读 · 0 评论 -
31、动态集成选择与单类分类器模糊组合的研究
本文研究了动态集成选择的概率方法与单类分类器的模糊组合策略,分析了DES-CS和DES-CD在异构与同构集成中的分类性能,表明DES-CD在多数数据集上表现优异且具有统计显著性。提出了基于模糊逻辑的模糊组合器(FC)、模糊ECOC(FECOC)和模糊决策模板(FDT)模型,并详细推导了各模型的计算复杂度与预期空间复杂度。研究表明,FC、FECOC和FDT虽精度较高但计算开销大,而ECOC和DTs更适合资源受限场景。通过多线程优化,可显著降低ECOC和DTs的计算复杂度至O(M),提升效率。文章最后给出了不同原创 2025-09-23 09:45:04 · 14 阅读 · 0 评论 -
30、基于分类器能力和多样性的结构化输出元素排序与动态集成选择研究
本文研究了机器学习中结构化输出元素排序与基于分类器能力和多样性的动态集成选择方法。通过实验比较多种排序策略,发现启发式排序在准确性和效率之间取得了良好平衡;提出的DES-CD系统结合分类器能力与多样性,在异质和同质分类器集合上均显著优于传统方法。文章还探讨了二者关联、实际应用案例及未来研究方向,为提升多分类器系统性能提供了有效途径。原创 2025-09-22 09:15:39 · 13 阅读 · 0 评论 -
29、房地产估值与结构化输出分类的机器学习方法研究
本文研究了机器学习在房地产估值和结构化输出分类两个领域中的应用。在房地产估值方面,采用遗传神经网络结合多种重采样方法进行实验,比较了经典、袋外、Efron’s .632和k-Holdout等方法的性能,结果表明不同重采样策略对预测精度有显著影响。在结构化输出分类方面,提出基于AdaBoostSeq算法和启发式排序方法,通过最小化序列预测误差并优化输出元素学习顺序,显著提升分类准确性。实验显示排序策略对汉明损失和分类准确率具有重要影响,启发式方法接近最优排序效果。文章最后总结了当前方法的关键步骤与结论,并展望原创 2025-09-21 11:48:38 · 15 阅读 · 0 评论 -
28、机器学习分类与回归方法研究:SVM - RDA 分类器与 Bagging 方法对比
本文研究了SVM-RDA分类器与Bagging方法在分类与回归问题中的应用。针对蛋白质折叠识别多类问题,提出基于类相似性的特征选择算法(CS-SFS和CSO-SFS),结合SVM与RDA的优势,通过加权投票机制提升分类准确率,实验结果显示识别率达到64.2%。在回归任务中,采用Bagging集成方法结合遗传神经网络进行房价预测,并与专家评估方法对比,验证了模型的有效性与稳定性。研究表明,合理的特征选择与集成策略能显著提升模型性能,具有广泛的应用前景。原创 2025-09-20 11:46:28 · 14 阅读 · 0 评论 -
27、高效混合分类算法与特征选择在不同领域的应用研究
本文研究了高效混合分类算法在姑息治疗领域的应用以及基于类相似度的特征选择算法在蛋白质折叠识别中的应用。在姑息治疗中,提出结合CBR与随机决策树(RDT)的混合分类器,通过实验对比多种算法在预测患者疼痛程度上的表现,揭示了准确性与计算成本之间的权衡。在蛋白质折叠识别中,针对高维特征和小样本问题,设计了一种基于类相似度的特征选择方法,有效提升SVM-RDA混合分类器的准确率。研究结果表明,合理的算法组合与特征优化能显著提高不同领域分类任务的性能。未来工作将聚焦于元级推理自动化和特征选择算法的进一步优化。原创 2025-09-19 13:03:22 · 17 阅读 · 0 评论 -
26、医学图像检测与分类算法的创新研究
本文探讨了医学图像检测与分类算法的两项创新研究。其一,提出一种推广的多数投票方案用于糖尿病视网膜病变中的视盘检测,突破传统多数投票对正确算法数量过半的依赖,通过结合候选点空间位置关系提升检测准确性,并具备向其他医学图像检测任务扩展的潜力。其二,设计一种结合基于案例推理(CBR)与随机决策树(RDT)的混合分类算法,应用于姑息治疗中的疼痛预测,虽计算成本较高,但显著降低了平均误差。文章分析了两种方法的优势、不足及优化方向,展望其在医学领域的广泛应用前景。原创 2025-09-18 16:49:52 · 18 阅读 · 0 评论 -
25、图像自然纹理分类器组合的模糊聚合操作性能分析
本文提出一种基于模糊聚合操作的混合分类器,用于自然纹理图像的像素级分类。该方法结合模糊聚类(FC)和概率参数贝叶斯(BP)分类器,利用RGB颜色空间作为特征,在航空图像数据集上通过多种模糊聚合操作(如Hamacher、Yager、Dubois等)融合分类器输出,实现优于单一分类器的性能。实验结果表明,Hamacher并集(HU)表现最佳,错误率降至15.42%。整个系统采用无监督策略,具有良好的灵活性与应用前景,适用于农业、城市识别和灾难评估等领域。原创 2025-09-17 14:51:33 · 18 阅读 · 0 评论 -
24、DRSA - ANN分类器性能研究
本文研究了基于优势的粗糙集方法(DRSA)与人工神经网络(ANN)融合的混合分类器在文本风格分析中的性能。通过分析DRSA决策规则的支持度,对输入特征进行排序并应用于ANN分类器,探索不同排序策略对分类准确率的影响。实验结果表明,基于最大规则支持度的特征排序能有效减少输入特征数量至不足原始集合的33%,同时保持甚至提升分类准确率。关键特征如'and'、'not'、'by'、'from'和括号在作者识别中起重要作用。该方法无需领域知识,具备良好的降维能力和应用拓展潜力,适用于文本分类、图像识别和医疗诊断等领域原创 2025-09-16 10:16:08 · 14 阅读 · 0 评论 -
23、数据流分类器与虚拟概念漂移处理算法解析
本文介绍了精度更新集成分类器(AUE)和用于处理虚拟概念漂移的DEnBoost算法。AUE在多数数据集上表现优于AWE,具有恒定的内存与时间开销。DEnBoost通过信息密度度量检测局部新颖性,动态构建子模型并加权组合,有效应对输入分布变化。实验表明该算法在合成数据上能显著提升准确性,尤其在发生虚拟概念漂移时表现出良好适应性和泛化能力。未来工作将聚焦于优化模型组合策略、处理复杂漂移及实际应用验证。原创 2025-09-15 15:16:30 · 14 阅读 · 0 评论 -
22、具有概念漂移的数据流精确更新集成算法解析
本文提出了一种新的自适应集成算法——精确更新集成(AUE),用于处理具有概念漂移的数据流。AUE改进了传统精度加权集成(AWE)的不足,采用在线学习和更简单的加权机制,能够在保持高效计算的同时提升分类准确性。通过在多个真实与合成数据集上的实验表明,AUE在应对突然和渐进概念漂移方面均表现出色,整体性能优于AWE、HOT和HT+Win等现有方法,是一种稳定且高效的集成学习方案。原创 2025-09-14 10:09:46 · 16 阅读 · 0 评论 -
21、通用上下文推理环境解决跟踪问题
本文提出了一种基于通用上下文推理环境的跟踪问题解决方案,通过整合机器学习与符号知识方法,构建了一个包含跟踪、注释和知识模块的集成架构。该系统利用基于本体的JDL模型,在多抽象层级上实现语义提取与推理,支持从低级轨迹到高级场景理解的数据融合。知识模块采用RACER推理器和nRQL规则进行演绎与溯因推理,并结合空间关系理论(如RCC)优化几何建模,有效应对遮挡等复杂跟踪挑战。案例研究表明,系统能通过用户监督与上下文信息识别遮挡并调整跟踪行为,未来将扩展至更高层级的活动影响管理与自适应建议机制。原创 2025-09-13 09:37:12 · 15 阅读 · 0 评论 -
20、提升动作分类准确性的智能系统
本文介绍了一种提升动作分类准确性的智能系统,结合视图不变动作分类器与上下文信息,利用HOOF和HOG特征及RVM分类器实现动作识别,并通过概率上下文模型融合空间信息以提高准确性。同时提出上下文推理环境,基于符号架构和本体原型解决视频跟踪中的遮挡等问题。系统在飞利浦 HomeLab 数据集上进行了应用示例分析,未来将重点开展实验验证、视图不变性优化、模型迁移及推理环境增强等研究方向。原创 2025-09-12 15:46:41 · 18 阅读 · 0 评论 -
19、基于RSS定位的动态信道模型LMS更新与动作分类精度提升
本文探讨了基于接收信号强度(RSS)的定位技术中动态信道模型的自适应校准方法,提出利用最小均方(LMS)算法为每个锚节点独立更新对数传播模型参数,以提升定位精度。同时,研究了基于视图相关上下文信息的动作识别方法,通过结合视图无关分类器与场景特定知识,提高动作分类准确性。文章详细介绍了LMS自适应校准流程、双曲定位算法及动作识别系统在智能家居中的应用,并通过仿真验证了方法的有效性。最后,展望了未来在步长优化、参考点部署以及更鲁棒动作表示方面的研究方向。原创 2025-09-11 09:39:33 · 19 阅读 · 0 评论
分享