高效混合分类算法与特征选择在不同领域的应用研究
在机器学习和模式识别领域,分类算法和特征选择是两个至关重要的研究方向。本文将介绍一种高效的混合分类算法在姑息治疗领域的应用,以及一种基于类相似度的有效特征选择算法在蛋白质折叠识别问题中的应用。
高效混合分类算法在姑息治疗领域的应用
在姑息治疗领域,准确预测患者的疼痛程度对于制定有效的治疗方案至关重要。为了实现这一目标,研究人员提出了一种结合机器学习方法和基于案例推理的混合随机决策树(RDT)算法。
相关问题与挑战
在基于案例推理(CBR)系统中,存在一个“效用问题”,即当所学的额外知识降低而不是提高推理系统的性能时,就会出现这个问题。理论上,当系统的案例库无限制增加时,这个问题总会在CBR系统中出现。不过,对于实际中中等规模案例库的CBR系统,这个问题不一定会出现。此外,案例库大小缩减方法可能适得其反,因为这些方法的计算需求比直接使用未缩减的大案例库进行推理还要高。
随机决策树分类实验
- 算法原理 :该混合RDT算法结合了CBR检索的懒惰和局部特定特征,以及传统机器学习算法中常见的急切和全局特征。具体来说,使用特定领域的相关性度量检索可用案例中最相似的一半,然后将这部分案例子集作为训练数据运行RDT算法。
- 分类方法 :算法中的每个决策树将案例库中的案例划分到其叶节点,这与CBR中用于高效检索的索引树的构建概念相似。基于此,每个树根据与新问题查询到达相同叶节点的先前案例对新问题查询进行分类。通过计算每个案例与问题查询共享叶节点的次数(即案例的接近度),并使用
订阅专栏 解锁全文
14万+

被折叠的 条评论
为什么被折叠?



