医疗领域的混合人工智能系统与患者分类研究
1. 远程监测的混合人工智能系统
在远程监测的辅助系统中,有两种重要的分类器,分别是统计分类器和基于规则的分类器。
1.1 统计分类器
统计分类器由一个带有一个隐藏层和随机节点数量的多层感知器(MLP)组成,节点数量是从10次训练运行中选择的。输入值被归一化到0到1的范围内。目标(优先级)值在事件发生时为1,如果当天处于11天的升级期内则大于0,否则为0。
1.2 基于规则的分类器
基于规则的分类器包含以下两条规则,这些规则是从人工事件生成过程中任意推导出来的。如果规则匹配,返回值为1,否则为0。
- 如果最后一次体重 > 平均体重的110%,则建议住院治疗。
- 如果最后一次血压 < 平均血压的90%,则建议住院治疗。
1.3 分类器结果对比
| 分类器类型 | 平均误差率(%) | 假阴性率(%) |
|---|---|---|
| 神经网络分类器 | 1.25 | 23.82 |
| 基于规则的分类器 | 18.70 | 30.31 |
| 组合分类器 | 2.05 | 17.98 |
虽然组合分类器的总体误差率略高于单独的神经网络分类器,但混合模型显著降低了患者优先级过低的比例。
2. 患者分类系统在护理物流活动中的应用
2.1 患者分类的背景与意义
患者分类在护理领域有着悠久的历史,可追溯到弗洛伦斯·南丁格尔时期。提供高质量护理的首要条件是拥有合适数量的护士。随着医疗领域的快速变化,如何确定满足患者需求所需的护士数量成为一个持续的挑战,因此出现了许多不同的患者分类系统。
2.2 患者分类建模的挑战
在过去,患者分类方法较为简单。例如在南丁格尔时期,病情最严重的患者被安排在靠近病房护士长办公室的位置以便观察,而能自理的患者则被安排在病房远端。20世纪50 - 60年代,由于医疗成本增加和劳动力短缺,人们开始重视充足的医疗保健。1973年,玛丽·艾伦·沃斯特勒根据24小时内所需的护理时间定义了5种患者类别,如下表所示:
| 类别 | 小时数 | 平均小时数 |
| — | — | — |
| I 自我护理 | 1 - 2 | 1.5 |
| II 最低护理 | 3 - 4 | 3.5 |
| III 中级护理 | 5 - 6 | 5.5 |
| IV 改良重症护理 | 7 - 8 | 7.5 |
| V 重症护理 | 10 - 14 | 12 |
2.3 患者分类的概念与设计
2.3.1 分类标准的选择
选择患者分类标准时,要依据弗吉尼亚·亨德森和多萝西娅·奥勒姆的医疗保健定义,同时考虑治疗和诊断程序。
2.3.2 不同国家的分类方法
- 塞尔维亚 :将患者分类标准分为五类,以一般护理为例,其定义包含11条标准,满足其中6条即可定义为一般护理患者。这种分类的特点是根据一系列语言特征的满足情况来决定所需医疗保健的程度。
- 克罗地亚 :患者被分为五类,对所有患者类别定义了16项患者活动,并在4分制的量表上进行评分。其中,跌倒风险使用莫尔斯量表评估,压疮风险使用布拉登量表评估。根据这些量表的得分,患者可以被进一步细分到不同的风险类别。最后,根据关键因素表,将总分分布到不同的类别中。
2.4 混合分类模型、方法和材料
2.4.1 研究目标
研究的目标是评估患者类别和医疗保健量,确定实际护理小时数,最终确定提供高质量护理所需的合适护士数量。
2.4.2 混合人工神经网络(ANN)
采用混合ANN进行复杂分析,因为简单的ANN存在学习阶段长、可能陷入局部最小值、学习阶段可能振荡、情况变化时需重复学习阶段以及权重分析复杂等局限性。
2.4.3 具体模型
使用学习向量量化(LVQ)网络和自组织映射(SOM)这两种常用的竞争ANN算法。LVQ网络可以对任何输入向量集进行分类,SOM算法基于竞争学习,能使神经网络中的神经元逐渐对不同的输入类别或样本集敏感。
2.4.4 数据集
研究使用了塞尔维亚诺维萨德伏伊伏丁那临床中心神经病学研究所的数据集,该数据集包含27名不同患者两周的观察数据。患者根据克罗地亚的分类标准被分为五类,然后使用混合LVQ - SOM模型来预测提供高质量护理所需的合适护士数量。
2.5 实验结果
2.5.1 风险分类
跌倒风险和压疮风险由LVQ网络进行分类,这些风险数据的输出与其他14项输入数据一起作为SOM的输入。
2.5.2 SOM的使用步骤
- 构建数据集。
- 对数据集进行归一化处理。
- 训练地图。
- 可视化地图。
- 分析结果。
2.5.3 实验结果类型
- 布拉登量表和莫尔斯量表评估 :LVQ网络在95%的情况下提供了正确的估计。
- 护理时间和物流活动评估 :结果的讨论较为复杂,因为正确的时间没有明确定义,而是一个预期的时间范围,且该结果误差敏感性高。
- 护士数量预测 :该结果依赖于护理时间的评估,但误差敏感性较低。混合LVQ - SOM模型给出的实验结果介于最低和平均水平之间。
以下是部分输入数据集(一周的数据):
| 星期 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
| — | — | — | — | — | — | — | — |
| 一般护理患者数 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |
| 一般护理小时数 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |
| 半重症护理患者数 | 8 | 7 | 7 | 7 | 8 | 8 | 8 |
| 半重症护理小时数 | 24 | 21 | 21 | 21 | 24 | 24 | 24 |
| 重症护理患者数 | 3 | 3 | 3 | 3 | 2 | 2 | 2 |
| 重症护理小时数 | 18 | 18 | 18 | 18 | 12 | 12 | 12 |
| 特殊重症护理患者数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊重症护理小时数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊护理患者数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊护理小时数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 总患者数 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
以下是计算和LVQ - SOM模型的结果(一周的数据):
| 星期 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
| — | — | — | — | — | — | — | — |
| 总患者数 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 所需护理小时数 | 51 | 49 | 49 | 49 | 46 | 46 | 46 |
| 三班制护士数量 | 5 | 5 | 5 | 5 | 5 | 4 | 4 |
| 护士工作小时数(护士数 x 8小时) | 40 | 40 | 40 | 40 | 40 | 32 | 32 |
| 差异(+ / -) | -11 | -9 | -9 | -9 | -9 | -12 | -12 |
| 最低护士数量 | 6.4 | 6.1 | 6.1 | 6.1 | 5.8 | 5.8 | 5.8 |
| 最低护士数量(全职 + 兼职) | 6.5 | 6 | 6 | 6 | 6 | 6 | 6 |
| 最低护士数量(全职) | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 平均护士数量 | 8.6 | 8.2 | 8.2 | 8.2 | 7.8 | 7.8 | 7.8 |
| 平均护士数量(全职 + 兼职) | 8.5 | 8 | 8 | 8 | 8 | 8 | 8 |
| 平均护士数量(全职) | 9 | 8 | 8 | 8 | 8 | 8 | 8 |
| LVQ - SOM评估护士数量(全职 + 兼职) | 8 | 7.5 | 7.5 | 7.5 | 7 | 7 | 7 |
3. 总结与展望
3.1 混合人工智能系统优势总结
在远程监测的辅助系统中,混合人工智能系统展现出了独特的优势。统计分类器与基于规则的分类器相结合,虽然组合分类器的总体误差率略高于单独的神经网络分类器,但显著降低了患者优先级过低的比例。这意味着混合模型在实际应用中能够更合理地对患者进行分类,为医疗干预提供更准确的依据。例如,在判断患者是否需要住院治疗的场景中,通过综合考虑多种因素,避免了因单一分类器的局限性而导致患者被错误分类的情况。
3.2 患者分类系统的价值体现
在护理物流活动中,患者分类系统具有重要的价值。它可以帮助医院快速了解患者的病情严重程度,确定所需的护理类型和护士数量,从而提高护理效率和质量。以塞尔维亚和克罗地亚的分类方法为例,不同的分类标准都围绕着如何准确评估患者的需求,为提供个性化的医疗服务提供了基础。而且,随着医疗领域的发展,患者数量不断增加,人工检查每日测量结果变得单调且需要更多的人力,使用基于机器学习的分类系统可以有效降低错误风险,提高医生的工作效率,让他们有更多时间关注关键病例。
3.3 未来研究方向
3.3.1 模型的优化与改进
虽然混合人工神经网络(ANN)在患者分类中取得了一定的成果,但仍有改进的空间。例如,进一步研究如何克服简单ANN的局限性,如缩短学习阶段、避免陷入局部最小值等。可以探索新的算法或对现有算法进行优化,提高模型的准确性和稳定性。同时,对于LVQ网络和SOM算法,可以研究如何更好地结合它们的优势,提高分类的效果。
3.3.2 数据的拓展与应用
目前的研究使用了特定的数据集,未来可以考虑拓展数据集的规模和多样性,包括更多不同类型的患者和更多的医疗指标。这样可以使模型更加全面地学习患者的特征,提高分类的准确性。此外,还可以探索如何将患者分类系统与其他医疗信息系统进行集成,实现数据的共享和交互,为医疗决策提供更丰富的信息。
3.3.3 实际应用的验证与推广
在未来的几年里,计划将现有的实现应用于涉及数百名患者的实地研究中。通过实际应用的验证,可以更深入地了解混合人工智能方法在实际操作中的效果和问题。根据实地研究的结果,对模型进行进一步的调整和优化,然后将其推广到更广泛的医疗场景中,为更多的患者和医疗机构提供服务。
3.4 未来研究的意义
未来的研究对于提高医疗服务的质量和效率具有重要意义。通过优化模型和拓展数据,可以更准确地评估患者的需求,合理分配医疗资源,确保患者得到及时、有效的治疗。同时,实际应用的验证和推广可以让更多的医疗机构受益于混合人工智能系统,推动医疗行业的智能化发展。
3.5 研究的潜在影响
如果未来的研究取得成功,混合人工智能系统和患者分类系统有望在医疗领域得到广泛应用。这将改变传统的医疗服务模式,提高医疗决策的科学性和准确性,减少人为因素的干扰。此外,还可以降低医疗成本,提高医疗资源的利用效率,为社会带来巨大的经济效益和社会效益。
以下是一个简单的mermaid流程图,展示未来研究的大致方向:
graph LR
A[模型优化与改进] --> B[实际应用验证]
C[数据拓展与应用] --> B
B --> D[推广到更广泛医疗场景]
综上所述,混合人工智能系统和患者分类系统在医疗领域具有广阔的应用前景。通过不断的研究和实践,有望为医疗行业带来新的突破和发展。
42

被折叠的 条评论
为什么被折叠?



