51、医疗领域的混合人工智能系统与患者分类研究

医疗领域的混合人工智能系统与患者分类研究

1. 远程监测的混合人工智能系统

在远程监测的辅助系统中,有两种重要的分类器,分别是统计分类器和基于规则的分类器。

1.1 统计分类器

统计分类器由一个带有一个隐藏层和随机节点数量的多层感知器(MLP)组成,节点数量是从10次训练运行中选择的。输入值被归一化到0到1的范围内。目标(优先级)值在事件发生时为1,如果当天处于11天的升级期内则大于0,否则为0。

1.2 基于规则的分类器

基于规则的分类器包含以下两条规则,这些规则是从人工事件生成过程中任意推导出来的。如果规则匹配,返回值为1,否则为0。
- 如果最后一次体重 > 平均体重的110%,则建议住院治疗。
- 如果最后一次血压 < 平均血压的90%,则建议住院治疗。

1.3 分类器结果对比

分类器类型 平均误差率(%) 假阴性率(%)
神经网络分类器 1.25 23.82
基于规则的分类器 18.70 30.31
组合分类器 2.05 17.98

虽然组合分类器的总体误差率略高于单独的神经网络分类器,但混合模型显著降低了患者优先级过低的比例。

2. 患者分类系统在护理物流活动中的应用

2.1 患者分类的背景与意义

患者分类在护理领域有着悠久的历史,可追溯到弗洛伦斯·南丁格尔时期。提供高质量护理的首要条件是拥有合适数量的护士。随着医疗领域的快速变化,如何确定满足患者需求所需的护士数量成为一个持续的挑战,因此出现了许多不同的患者分类系统。

2.2 患者分类建模的挑战

在过去,患者分类方法较为简单。例如在南丁格尔时期,病情最严重的患者被安排在靠近病房护士长办公室的位置以便观察,而能自理的患者则被安排在病房远端。20世纪50 - 60年代,由于医疗成本增加和劳动力短缺,人们开始重视充足的医疗保健。1973年,玛丽·艾伦·沃斯特勒根据24小时内所需的护理时间定义了5种患者类别,如下表所示:
| 类别 | 小时数 | 平均小时数 |
| — | — | — |
| I 自我护理 | 1 - 2 | 1.5 |
| II 最低护理 | 3 - 4 | 3.5 |
| III 中级护理 | 5 - 6 | 5.5 |
| IV 改良重症护理 | 7 - 8 | 7.5 |
| V 重症护理 | 10 - 14 | 12 |

2.3 患者分类的概念与设计

2.3.1 分类标准的选择

选择患者分类标准时,要依据弗吉尼亚·亨德森和多萝西娅·奥勒姆的医疗保健定义,同时考虑治疗和诊断程序。

2.3.2 不同国家的分类方法
  • 塞尔维亚 :将患者分类标准分为五类,以一般护理为例,其定义包含11条标准,满足其中6条即可定义为一般护理患者。这种分类的特点是根据一系列语言特征的满足情况来决定所需医疗保健的程度。
  • 克罗地亚 :患者被分为五类,对所有患者类别定义了16项患者活动,并在4分制的量表上进行评分。其中,跌倒风险使用莫尔斯量表评估,压疮风险使用布拉登量表评估。根据这些量表的得分,患者可以被进一步细分到不同的风险类别。最后,根据关键因素表,将总分分布到不同的类别中。

2.4 混合分类模型、方法和材料

2.4.1 研究目标

研究的目标是评估患者类别和医疗保健量,确定实际护理小时数,最终确定提供高质量护理所需的合适护士数量。

2.4.2 混合人工神经网络(ANN)

采用混合ANN进行复杂分析,因为简单的ANN存在学习阶段长、可能陷入局部最小值、学习阶段可能振荡、情况变化时需重复学习阶段以及权重分析复杂等局限性。

2.4.3 具体模型

使用学习向量量化(LVQ)网络和自组织映射(SOM)这两种常用的竞争ANN算法。LVQ网络可以对任何输入向量集进行分类,SOM算法基于竞争学习,能使神经网络中的神经元逐渐对不同的输入类别或样本集敏感。

2.4.4 数据集

研究使用了塞尔维亚诺维萨德伏伊伏丁那临床中心神经病学研究所的数据集,该数据集包含27名不同患者两周的观察数据。患者根据克罗地亚的分类标准被分为五类,然后使用混合LVQ - SOM模型来预测提供高质量护理所需的合适护士数量。

2.5 实验结果

2.5.1 风险分类

跌倒风险和压疮风险由LVQ网络进行分类,这些风险数据的输出与其他14项输入数据一起作为SOM的输入。

2.5.2 SOM的使用步骤
  • 构建数据集。
  • 对数据集进行归一化处理。
  • 训练地图。
  • 可视化地图。
  • 分析结果。
2.5.3 实验结果类型
  • 布拉登量表和莫尔斯量表评估 :LVQ网络在95%的情况下提供了正确的估计。
  • 护理时间和物流活动评估 :结果的讨论较为复杂,因为正确的时间没有明确定义,而是一个预期的时间范围,且该结果误差敏感性高。
  • 护士数量预测 :该结果依赖于护理时间的评估,但误差敏感性较低。混合LVQ - SOM模型给出的实验结果介于最低和平均水平之间。

以下是部分输入数据集(一周的数据):
| 星期 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
| — | — | — | — | — | — | — | — |
| 一般护理患者数 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |
| 一般护理小时数 | 9 | 10 | 10 | 10 | 10 | 10 | 10 |
| 半重症护理患者数 | 8 | 7 | 7 | 7 | 8 | 8 | 8 |
| 半重症护理小时数 | 24 | 21 | 21 | 21 | 24 | 24 | 24 |
| 重症护理患者数 | 3 | 3 | 3 | 3 | 2 | 2 | 2 |
| 重症护理小时数 | 18 | 18 | 18 | 18 | 12 | 12 | 12 |
| 特殊重症护理患者数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊重症护理小时数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊护理患者数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 特殊护理小时数 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 总患者数 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

以下是计算和LVQ - SOM模型的结果(一周的数据):
| 星期 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
| — | — | — | — | — | — | — | — |
| 总患者数 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 所需护理小时数 | 51 | 49 | 49 | 49 | 46 | 46 | 46 |
| 三班制护士数量 | 5 | 5 | 5 | 5 | 5 | 4 | 4 |
| 护士工作小时数(护士数 x 8小时) | 40 | 40 | 40 | 40 | 40 | 32 | 32 |
| 差异(+ / -) | -11 | -9 | -9 | -9 | -9 | -12 | -12 |
| 最低护士数量 | 6.4 | 6.1 | 6.1 | 6.1 | 5.8 | 5.8 | 5.8 |
| 最低护士数量(全职 + 兼职) | 6.5 | 6 | 6 | 6 | 6 | 6 | 6 |
| 最低护士数量(全职) | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 平均护士数量 | 8.6 | 8.2 | 8.2 | 8.2 | 7.8 | 7.8 | 7.8 |
| 平均护士数量(全职 + 兼职) | 8.5 | 8 | 8 | 8 | 8 | 8 | 8 |
| 平均护士数量(全职) | 9 | 8 | 8 | 8 | 8 | 8 | 8 |
| LVQ - SOM评估护士数量(全职 + 兼职) | 8 | 7.5 | 7.5 | 7.5 | 7 | 7 | 7 |

3. 总结与展望

3.1 混合人工智能系统优势总结

在远程监测的辅助系统中,混合人工智能系统展现出了独特的优势。统计分类器与基于规则的分类器相结合,虽然组合分类器的总体误差率略高于单独的神经网络分类器,但显著降低了患者优先级过低的比例。这意味着混合模型在实际应用中能够更合理地对患者进行分类,为医疗干预提供更准确的依据。例如,在判断患者是否需要住院治疗的场景中,通过综合考虑多种因素,避免了因单一分类器的局限性而导致患者被错误分类的情况。

3.2 患者分类系统的价值体现

在护理物流活动中,患者分类系统具有重要的价值。它可以帮助医院快速了解患者的病情严重程度,确定所需的护理类型和护士数量,从而提高护理效率和质量。以塞尔维亚和克罗地亚的分类方法为例,不同的分类标准都围绕着如何准确评估患者的需求,为提供个性化的医疗服务提供了基础。而且,随着医疗领域的发展,患者数量不断增加,人工检查每日测量结果变得单调且需要更多的人力,使用基于机器学习的分类系统可以有效降低错误风险,提高医生的工作效率,让他们有更多时间关注关键病例。

3.3 未来研究方向

3.3.1 模型的优化与改进

虽然混合人工神经网络(ANN)在患者分类中取得了一定的成果,但仍有改进的空间。例如,进一步研究如何克服简单ANN的局限性,如缩短学习阶段、避免陷入局部最小值等。可以探索新的算法或对现有算法进行优化,提高模型的准确性和稳定性。同时,对于LVQ网络和SOM算法,可以研究如何更好地结合它们的优势,提高分类的效果。

3.3.2 数据的拓展与应用

目前的研究使用了特定的数据集,未来可以考虑拓展数据集的规模和多样性,包括更多不同类型的患者和更多的医疗指标。这样可以使模型更加全面地学习患者的特征,提高分类的准确性。此外,还可以探索如何将患者分类系统与其他医疗信息系统进行集成,实现数据的共享和交互,为医疗决策提供更丰富的信息。

3.3.3 实际应用的验证与推广

在未来的几年里,计划将现有的实现应用于涉及数百名患者的实地研究中。通过实际应用的验证,可以更深入地了解混合人工智能方法在实际操作中的效果和问题。根据实地研究的结果,对模型进行进一步的调整和优化,然后将其推广到更广泛的医疗场景中,为更多的患者和医疗机构提供服务。

3.4 未来研究的意义

未来的研究对于提高医疗服务的质量和效率具有重要意义。通过优化模型和拓展数据,可以更准确地评估患者的需求,合理分配医疗资源,确保患者得到及时、有效的治疗。同时,实际应用的验证和推广可以让更多的医疗机构受益于混合人工智能系统,推动医疗行业的智能化发展。

3.5 研究的潜在影响

如果未来的研究取得成功,混合人工智能系统和患者分类系统有望在医疗领域得到广泛应用。这将改变传统的医疗服务模式,提高医疗决策的科学性和准确性,减少人为因素的干扰。此外,还可以降低医疗成本,提高医疗资源的利用效率,为社会带来巨大的经济效益和社会效益。

以下是一个简单的mermaid流程图,展示未来研究的大致方向:

graph LR
    A[模型优化与改进] --> B[实际应用验证]
    C[数据拓展与应用] --> B
    B --> D[推广到更广泛医疗场景]

综上所述,混合人工智能系统和患者分类系统在医疗领域具有广阔的应用前景。通过不断的研究和实践,有望为医疗行业带来新的突破和发展。

内容概要:本文档是一份关于“超声谐波成像中幅超声谐波成像中幅度调制聚焦超声引起的全场位移和应变的分析模型(Matlab代码实现)度调制聚焦超声引起的全场位移和应变的分析模型”的Matlab代码实现研究资料,重点构建了一个用于分析在超声谐波成像过程中,由幅度调制聚焦超声所引发的生物组织全场位移应变的数学模型。该模型通过Matlab仿真手段实现了对声场激励下组织力学响应的精确计算可视化,有助于深入理解超声激励组织变形之间的物理机制,提升超声弹性成像的精度可靠性。文档还附带多个相关科研领域的Matlab/Simulink代码实例,涵盖无人机控制、路径规划、电力系统仿真、信号处理、机器学习等多个方向,展示了强大的技术支撑应用拓展能力。; 适合人群:具备Matlab编程基础,从事医学超声成像、生物力学建模、信号图像处理等相关领域研究研究生、科研人员及工程技术人员。; 使用场景及目标:①用于超声弹性成像中组织力学响应的仿真分析;②为开发新型超声诊断技术提供理论模型算法支持;③作为多物理场耦合仿真的教学研究案例,促进跨学科技术融合。; 阅读建议:建议读者结合Matlab代码逐行理解模型实现细节,重点关注声场建模、组织力学方程求解及位移应变后处理部分。同时可参考文档中提供的其他仿真案例,拓宽研究思路,提升综合科研能力。
标题基于SpringBoot的高校餐饮档口管理系统设计实现AI更换标题第1章引言介绍高校餐饮档口管理系统研究背景、意义、国内外现状及论文方法创新点。1.1研究背景意义阐述高校餐饮档口管理现状及系统开发的重要性。1.2国内外研究现状分析国内外高校餐饮管理系统研究应用进展。1.3研究方法及创新点概述本文采用的研究方法及系统设计的创新之处。第2章相关理论总结高校餐饮档口管理系统相关的现有理论。2.1SpringBoot框架理论阐述SpringBoot框架的原理、优势及其在Web开发中的应用。2.2数据库设计理论介绍数据库设计的基本原则、方法和步骤。2.3系统安全理论讨论系统安全设计的重要性及常见安全措施。第3章系统需求分析对高校餐饮档口管理系统的功能需求、性能需求等进行详细分析。3.1功能需求分析列举系统需实现的主要功能,如档口管理、订单处理等。3.2性能需求分析分析系统对响应时间、并发处理能力等性能指标的要求。3.3非功能需求分析阐述系统对易用性、可维护性等非功能方面的需求。第4章系统设计详细描述高校餐饮档口管理系统的设计过程。4.1系统架构设计给出系统的整体架构,包括前端、后端和数据库的设计。4.2模块设计详细介绍各个功能模块的设计,如用户管理、档口信息管理等。4.3数据库设计阐述数据库表结构的设计、数据关系及索引优化等。第5章系统实现测试介绍高校餐饮档口管理系统的实现过程及测试方法。5.1系统实现系统各模块的具体实现过程,包括代码编写和调试。5.2系统测试方法介绍系统测试的方法、测试用例设计及测试环境搭建。5.3系统测试结果分析从功能、性能等方面对系统测试结果进行详细分析。第6章结论展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括高校餐饮档口管理系统的设计实现成果。6.2展望指出系统存在的不足及未来改进和扩展的方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值