【手把手教你在飞牛系统存储摄像头数据】小白也能看懂的操作指南!

、前期准备

  1. 准备工具:一台已安装飞牛系统的NAS设备(如群晖等)
  2. 硬件连接:确保摄像头与路由器正确连接并通电
  3. 账号准备:提前注册好飞牛系统账号(后续会用到)

二、安装部署(关键步骤详解)
Step1:获取安装包

  • 访问指定官网下载"EasynVR Docker安装包"  
  • https://www.easynvr.com/download.html
  • 下载完成后得到一个压缩文件(约30MB)

Step2:部署Docker容器

  1. 登录飞牛系统管理界面 → 进入"Docker"模块
  2. 点击"新增项目" → 选择"Compose"模式
  3. 填写项目名称"easynvr" → 点击"路径"上传解压后的文件夹
  4. 修改配置文件(重点!):
    将原文件中的5处"pwd"替换为"."(例:原路径:pwd/configs → 修改后:./configs)

Step3:启动服务

  • 点击"创建项目后立即启动",等待部署完成(约需2-3分钟)
  • 成功标志:界面出现绿色运行状态图标

三、设备接入配置

  1. 登录管理后台
  • 地址格式:飞牛系统IP:10000(例:192.168.1.100:10000)
  • 初始账号:admin/admin(首次登录需立即修改密码)添加监控设备
  • 进入"设备列表" → 点击"添加设备"
  • 选择协议类型(推荐使用ONVIF协议)
  • 填写摄像头信息:
    ▶ 设备名称:自定义名称(如"办公室摄像头")
    ▶ IP地址:摄像头LAN口IP
    ▶ 端口号:默认80(部分型号需改成554)
    ▶ 用户名密码:摄像头登录凭证
  1. 实时预览验证
  • 添加成功后自动跳转监控界面
  • 支持多画面预览、云台控制(支持海康/大华等主流品牌)

四、数据管理与维护

  1. 录像存储设置
  • 进入"录像计划" → 设置录像策略
  • 支持定时录像、移动侦测录像等多种模式
  • 默认存储路径:/app/r(可通过Docker挂载自定义路径)
  1. 数据备份与回放
  • 支持本地存储+外接存储双备份
  • 录像回放支持:
    ▶ 按时间检索(精确到秒)
    ▶ 关键帧快速定位
    ▶ 视频片段下载
  1. 系统维护建议
  • 每周检查存储空间使用情况
  • 定期升级EasynVR容器版本
  • 设置管理员短信告警(推荐搭配飞牛短信模块)

五、常见问题排查

  1. 设备离线?
    → 检查摄像头IP是否与NAS在同一网段
    → 测试端口连通性(Telnet IP 端口号)
    → 重启摄像头和Docker容器

  2. 录像缺失?
    → 确认存储路径权限设置正确
    → 检查硬盘健康状态(SMART监测)
    → 查看系统日志定位异常时间点

  3. 画面卡顿?
    → 优化摄像头码率(建议H.265编码)
    → 升级NAS处理器性能
    → 启用视频流缓存功能

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值