自定义博客皮肤

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

PCL批量将mesh对象采样生成点云数据

#include <pcl/visualization/pcl_visualizer.h> #include <pcl/io/pcd_io.h> #include <pcl/io/ply_...

2018-03-16 15:32:00

阅读数 961

评论数 3

boost 遍历文件夹,返回文件路径,文件名

void getFiles(const string& rootPath,vector<string> &ret,vector<string> &...

2018-03-16 14:34:18

阅读数 533

评论数 0

CNN for Semantic Segmentation(语义分割,论文,代码,数据集,标注工具,blog)

在FCN网络在2104年提出后,越来越多的关于图像分割的深度学习网络被提出,相比传统方法,这些网络效果更好,运算速度更快,已经能成熟的运用在自然图像上。语义分割显然已经是计算机视觉领域的一个热门研究领域,也是通往实现完全场景理解的道路之一,被广泛应用于无人驾驶、人机交互、医疗图像、计算摄影、图像搜...

2017-11-27 17:53:24

阅读数 7117

评论数 2

对数据集进行扰动

import cv2 import numpy as np import os def randLighting(img):     saturation = 1.5     exposure = 1.5               hsv = cv2.cvtColor(i...

2017-09-30 12:03:36

阅读数 1713

评论数 1

将图像数据读写标记成txt文件

# -*- coding: UTF-8 -*- import os def IsSubString(SubStrList,Str): flag=True for substr in SubStrList: if not(substr in Str): ...

2017-09-30 11:54:35

阅读数 614

评论数 0

PSPNet

一 引言 1.场景理解任务数据库 1.1 LMO dataset       C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing:Label transfer via dense scene alignment. In ...

2017-09-03 11:31:11

阅读数 588

评论数 0

Caffe代码结构初体验

参考: Caffe源码导读

2016-10-22 15:04:32

阅读数 639

评论数 0

激活函数与caffe及参数

为什么引入非线性激励函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。正因为上面的原因,我们决定...

2016-10-22 10:44:13

阅读数 1956

评论数 0

卷积神经网络与caffe Convolution层及参数设置

卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的前期预处理...

2016-10-22 09:01:14

阅读数 25529

评论数 0

感知器算法与神经网络

感知器作为人工神经网络中最基本的单元,有多个输入和一个输出组成。虽然我们的目的是学习很多神经单元互连的网络,但是我们还是需要先对单个的神经单元进行研究。 感知器算法的主要流程:   首先得到n个输入,再将每个输入值加权,然后判断感知器输入的加权和最否达到某一阀值v,若达到,则通过sign函数输...

2016-10-21 15:54:17

阅读数 3029

评论数 0

caffe cuda jetson tk1 errors 解决

error while loading shared libraries: libcudart.so.6.5: cannot open shared object file: No such file or directory. 解决办法 sudo cp /usr/local/cuda-6...

2016-10-20 12:15:37

阅读数 814

评论数 0

图像处理与计算机视觉学习资源

OxfordCourse on CUDA Programming on NVIDIA GPUs点击打开链接 斯坦福大学Andrew Ng Deep Learning 教程中文教程  机器学习课程URL:http://openclassroom.stanford.edu/MainFolder...

2016-09-26 09:16:31

阅读数 1411

评论数 0

图像融合

一、概述   图像融合是图像处理中重要部分,能够协同利用同一场景的多种传感器图像信息,输出一幅更适合于人类视觉感知或计算机进一步处理与分析的融合图像。它可明显的改善单一传感器的不足,提高结果图像的清晰度及信息包含量,有利于更为准确、更为可靠、更为全面地获取目标或场景的信息。   图像融合主要应...

2016-09-04 12:29:40

阅读数 24893

评论数 2

曝光融合Exposure Fusion 与ghost

1、概述            说到EF那我们不得不谈谈HDR。高动态范围(HDR)图像可以表示动态范围跨度很大的真实场景。图像的动态范围(dynamic range)是指一幅图像中可见区域最大亮度与最小亮度的比值。同样的,场景中最大光度与最小光度的比值被称为场景的动态范围。现实场景中光度值的分...

2016-08-26 21:24:38

阅读数 8465

评论数 9

笔迹宽度估计的低质量文本图像二值化(Robust Document Image Binarization Technique for Degraded Document Images)

文本图像二值化在OCR和相关领域是个老话题,快速而准确的的二值化方法对这些领域的图像进一步处理尤为重要。对于图像亮度特征的有全局二值化、局部二值化,在图像亮度有明显双峰特征的是可进行全局二值化,金典的算法有OTSU,但是一些低质量文本并无双峰特征,这样对这些文本进行二值化就是一种难题。现阶段也存在...

2016-08-22 21:21:01

阅读数 889

评论数 0

C++静态库与动态库、创建及调用方法

1 什么是库 库是写好的现有的,成熟的,可以复用的代码。现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常。本质上来说库是一种可执行代码的二进制形式,可以被操作系统载入内存执行。库有两种:静态库(.a、.lib)和动态库(.so、.dll)。所谓静态、...

2016-08-16 19:59:07

阅读数 5714

评论数 0

局部二值化算法Niblack OpenCV实现

Niblack 算法的应用于文本图像二值化领域较多,算是比较经典的局部二值化处理方法,其局部二值化方法的提出也很有借鉴意义,包括后来的一些对其改进方法,Sauvola 算法、Nick 算法,核心思想是:根据图像像素点的邻域内的平均灰度和标准偏差来构造一个阈值曲面进行二值化处理。其阈值计算如下: ...

2016-08-14 10:59:05

阅读数 4987

评论数 2

自适应Canny边缘检测

#include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include #include #include using namespace cv; using namespace ...

2016-07-27 22:20:13

阅读数 864

评论数 0

svm支持向量机

支持向量机的最终求解可以化为一个具有线性约束的二次凸规划问题,不存在局部极小。通过引人核方法,可以将线性支持向量机简单地推广到非线性支持向量机,而且对于高维样本几乎不增加额外的计算量。算法首先随机选用一部分样本作为工作集即训练集,得到一组乘子。然后用条件对其余的样本进行检验,再把违反条件的样本加人...

2016-06-22 21:00:26

阅读数 507

评论数 0

Computer Vision and the machine learning workflow

The Computer Vision applications with machine learning have a common basicstructure. This structure is divided into different steps that are repeated...

2016-06-19 10:42:35

阅读数 565

评论数 0

提示
确定要删除当前文章?
取消 删除