人脸识别特征提取(LBP)及其opencv实现

LBP(Local Binary Pattern)是一种用于纹理分类的特征提取算法,因其对光照变化的鲁棒性和计算简单而在图像处理中得到广泛应用。在人脸识别中,LBP通过对图像像素的邻域比较生成二进制模式,形成特征向量,进而用于识别。通过计算每个像素的LBP值,构建直方图,再进行归一化,最终得到整个图像的特征表示。OpenCV库提供了实现LBP算子的功能,可用于脸部识别和其他计算机视觉任务。
摘要由CSDN通过智能技术生成

        LBP是一种简单,有效的纹理分类的特征提取算法。LBP算子是由Ojala等人于1996年提出的,主要的论文是"Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", pami, vol 24, no.7, July 2002。LBP就是"local binary pattern"的缩写。局部二值模式是一个简单但非常有效的纹理运算符。它将各个像素与其附近的像素进行比较,并把结果保存为二进制数。由于其辨别力强大和计算简单,局部二值模式纹理算子已经在不同的场景下得到应用。LBP最重要的属性是对诸如光照变化等造成的灰度变化的鲁棒性。它的另外一个重要特性是它的计算简单,这使得它可以对图像进行实时分析。

        局部二值模式特征向量可以通过如下方式计算:
        1.将检测窗口切分为区块(cells,例如,每个区块16x16像素)。
        2.对区块中的每个像素,与它的八个邻域像素进行比较(左上、左中、左下、右上等)。可以按照顺时针或者逆时针的顺序进行比较。
        3.对于中心像素大于某个邻域的,设置为1;否则,设置为0。这就获得了一个8位的二进制数(通常情况下会转换为十进制数字),作为该位置的特征。
        4.对每一个区块计算直方图。
        5.此时,可以选择将直方图归一化;
        6.串联所有区块的直方图,这就得到了当前检测窗口的特征向量。

        对图像中的每个像素,通过计算以其为中心的3*3邻域内各像素和中心像素的大小关系,把像素的灰度值转化为一个八位二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值