[统计学习方法]感知机(Perceptron)算法(原始形式)的实例(例题求解)

例2.1 求解:
对正实例点x1=(3,3)Tx2=(4,3)Tx1=(3,3)T,x2=(4,3)T,负实例点x3=(1,1)Tx3=(1,1)T
解 构建最优化问题:
这里写图片描述
按照感知机学习算法的原始形式求解w,bη=1.w,b。η=1.

(1)取初值w0=[0,0]b0=0w0=[0,0],b0=0
(2)对x1=(3,3)Ty1(w0x1+b0)=0x1=(3,3)T,y1(w0x1+b0)=0,未能被正确分类,更新w,bw,b

w1=(3,3)Tw0+ηy1x1w1=(3,3)T←w0+ηy1x1

b1=1b0+ηy1b1=1←b0+ηy1

x1=(3,3)Ty1(w1x1+b1)>0,x1=(3,3)T,y1(w1x1+b1)>0,
x2=(4,3)Ty2(w1x2+b1)>0.x2=(4,3)T,y2(w1x2+b1)>0.

(3)对x3=(1,1)Ty3(w1x3+b1)<0x3=(1,1)T,y3(w1x3+b1)<0,未能被正确分类,更新w1,b1w1,b1

w2=(2,2)Tw1+ηy3x3w2=(2,2)T←w1+ηy3x3

b2=0b1+ηy3b2=0←b1+ηy3

(4)对x3=(1,1)Ty3(w2x3+b2)<0x3=(1,1)T,y3(w2x3+b2)<0,未能被正确分类,更新w2,b2w2,b2

w3=(1,1)Tw2+ηy3x3w3=(1,1)T←w2+ηy3x3

b3=1b2+ηy3b3=−1←b2+ηy3

(5)对x3=(1,1)Ty3(w3x3+b3)<0x3=(1,1)T,y3(w3x3+b3)<0,未能被正确分类,更新w3,b3w3,b3

w4=(0,0)Tw3+ηy3x3w4=(0,0)T←w3+ηy3x3

b4=2b3+ηy3b4=−2←b3+ηy3

x3=(1,1)Ty3(w4x3+b4)>0.x3=(1,1)T,y3(w4x3+b4)>0.

(6)对x1=(3,3)Ty1(w4x1+b4)<0x1=(3,3)T,y1(w4x1+b4)<0,未能被正确分类,更新w4,b4w4,b4

w5=(3,3)Tw4+ηy1x1w5=(3,3)T←w4+ηy1x1

b5=1b4+ηy1b5=−1←b4+ηy1

x1=(3,3)Ty1(w5x1+b5)>0,x1=(3,3)T,y1(w5x1+b5)>0,
x2=(4,3)Ty2(w5x2+b5)>0.x2=(4,3)T,y2(w5x2+b5)>0.

(7)对x3=(1,1)Ty3(w5x3+b5)<0x3=(1,1)T,y3(w5x3+b5)<0,未能被正确分类,更新w5,b5w5,b5

w6=(2,2)Tw5+ηy3x3w6=(2,2)T←w5+ηy3x3

b6=2b5+ηy3b6=−2←b5+ηy3

(8)对x3=(1,1)Ty3(w6x3+b6)<0x3=(1,1)T,y3(w6x3+b6)<0,未能被正确分类,更新w6,b6w6,b6

w7=(1,1)Tw6+ηy3x3w7=(1,1)T←w6+ηy3x3

b7=3b6+ηy3b7=−3←b6+ηy3

x1=(3,3)Ty1(w7x1+b7)>0,x1=(3,3)T,y1(w7x1+b7)>0,
x2=(4,3)Ty2(w7x2+b7)>0.x2=(4,3)T,y2(w7x2+b7)>0.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值