本文感知机(perceptron)主要讲解原理、相关的公式、算法并通过举例计算来理解感知机算法的过程,最后附上相关的python代码。若想要详细的了解感知机公式的每一步推导过程及证明,本文不适合您。
感知机原理公式实例及Python代码
感知机是二类分类的线性分类模型,其中输入为实例的特征向量,输出为它的类别,可以取-1和+1两种。当然,输出也可以取其他的两种值,例如a和b,对和错,这里的-1和+1只是一个标签而已。
感知机对应于特征空间(可以是二维,三维,...,n维)中将实例划分为正负两类的分离超平面,属于判别模型,是神经网络与支持向量机的基础。它是Rosenblatt在1957年提出的。
本文中包括三部分:1、感知机模型;2、感知机的学习策略;3、感知机学习算法。
1、感知机模型
感知机定义:
感知机的几何解释:线性方程
对应于特征空间中的一个超平面S,其中w是超平面的法向量,b是超平面的截距。这个超平面将特征空间划分为两个部分。位于两部分的点分别被分为正、负两类。因此,超平面称为分离超平面(separating hyperplane),如下图所示:
感知机学习,由训练数据集(实例的特征向量及类别)
2、感知机学习策略
2.1 数据集的线性可分性定义