感知机学习算法原理公式实例及python代码

本文深入解析感知机模型,介绍其线性分类的原理、学习策略和学习算法,包括原始形式和对偶形式,并通过Python代码进行实战演示。同时,探讨了线性可分数据集的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文感知机(perceptron)主要讲解原理、相关的公式、算法并通过举例计算来理解感知机算法的过程,最后附上相关的python代码。若想要详细的了解感知机公式的每一步推导过程及证明,本文不适合您。

                         感知机原理公式实例及Python代码

感知机是二类分类的线性分类模型,其中输入为实例的特征向量,输出为它的类别,可以取-1和+1两种。当然,输出也可以取其他的两种值,例如a和b,对和错,这里的-1和+1只是一个标签而已。

感知机对应于特征空间(可以是二维,三维,...,n维)中将实例划分为正负两类的分离超平面,属于判别模型,是神经网络与支持向量机的基础。它是Rosenblatt在1957年提出的。

本文中包括三部分:1、感知机模型;2、感知机的学习策略;3、感知机学习算法。

                                            1、感知机模型

感知机定义:

感知机的几何解释:线性方程

                                                                          

对应于特征空间中的一个超平面S,其中w是超平面的法向量,b是超平面的截距。这个超平面将特征空间划分为两个部分。位于两部分的点分别被分为正、负两类。因此,超平面称为分离超平面(separating hyperplane),如下图所示:

                                                              

感知机学习,由训练数据集(实例的特征向量及类别)

                                              

       

                                                                            

                                                     2、感知机学习策略

2.1 数据集的线性可分性定义

     

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值