洛谷题目: P2398 GCD SUM 题解 (本题较难,省选-难度)

题目传送门:

P2398 GCD SUM - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

前言:

本题涉及到 欧拉函数,素数判断,质数,筛法 ,三大知识点,相对来说还是比较难的。

本题要求我们计算     \sum_{i = 1}^{n}\sum_{j = 1}^{n}\gcd(i, j)   ,也就是对所有满足   1\leq i\leq n  和  1\leq j \leq n 

的整数对   (i,j)   ,求出它们的最大公约数并将这些最大公约数累加起来。

#使用暴力枚举思路:

        1、原理:

                最直接的方法就是通过两层嵌套循环遍历所有可能的   (i,j)   组合,对于每一对  (i,j)   计算它们的最大公约数    gcd(i,j)   ,并将结果累加到总和当中。

        代码示例(以Python语言示例):

sum = 0
for i from 1 to n:
    for j from 1 to n:
        sum = sum + gcd(i, j)
print(sum)

##复杂度分析:

        1、时间复杂度:

                O(n^{2} logn)  。因为有两层嵌套循环,循环次数为  n *n=n^{2}  ,而计算        gcd(i,j)  通常使用欧几里得算法,其时间复杂度为    O(log \: min(i,j))   ,最坏情况下为O(log n)。

        2、空间复杂度:

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值