算法工程师修仙之路:吴恩达深度学习(五)

12 篇文章 0 订阅

神经网络和深度学习

神经网络基础


梯度下降法

  • 梯度下降法可以在你测试集上,通过最小化代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 来训练的参数 w w w b b b

  • 梯度下降法的形象化说明:
    在这里插入图片描述

    • 在这个图中,横轴表示你的空间参数 w w w b b b
    • 在实践中, w w w 可以是更高的维度,但是为了更好地绘图,我们定义 w w w b b b 都是单一实数;
    • 代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 是在水平轴 w w w b b b 上的曲面,因此曲面的高度就是 J ( w , b ) J(w, b) J(w,b) 在某一点的函数值;
    • 我们所做的就是找到使得代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 函数值是最小值时对应的参数 w w w b b b
    • 由于逻辑回归的代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 特性,我们必须定义代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 为凸函数。
  • 初始化 w w w b b b,可以用如图那个小红点来初始化参数,也可以采用随机初始化的方法,对于逻辑回归几乎所有的初始化方法都有效,因为函数是凸函数,无论在哪里初始化,应该达到同一点或大致相同的点。
    在这里插入图片描述

  • 我们以如图的小红点的坐标来初始化参数 w w w b b b
    在这里插入图片描述

    • 朝最陡的下坡方向走一步,不断地迭代,走到了如图中第二个小红点处:
      在这里插入图片描述
    • 我们可能停在这里也有可能继续朝最陡的下坡方向再走一步,经过两次迭代走到第三个小红点处:
      在这里插入图片描述
    • 直到走到全局最优解或者接近全局最优解的地方,通过以上的三个步骤我们可以找到全局最优解,也就是代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 这个凸函数的最小值点。
  • 梯度下降法的细节化说明(仅有一个参数):
    在这里插入图片描述

    • 假定代价函数(成本函数) J ( w ) J(w) J(w) 只有一个参数 w w w,即用一维曲线代替多维曲线,这样可以更好画出图像;
    • w = w − α d J ( w ) d w w=w-\alpha\frac{dJ(w)}{dw} w=wαdwdJ(w),迭代就是不断重复更新参数;
    • α \alpha α 表示学习率,用来控制步长,即向下走一步的长度 d J ( w ) d w \frac{dJ(w)}{dw} dwdJ(w) 就是函数 J ( w ) J(w) J(w) w w w 求导,在代码中我们会使用 d w dw dw 表示这个结果;
    • 对于导数更加形象化的理解就是斜率,如图该点的导数就是这个点相切于 J ( w ) J(w) J(w) 的小三角形的高除宽;
    • 假设我们以如下图点为初始化点,该点处的斜率的符号是正的,即 d J ( w ) d w > 0 \frac{dJ(w)}{dw}>0 dwdJ(w)>0,所以接下来会向左走一步:
      在这里插入图片描述
    • 整个梯度下降法的迭代过程就是不断地向左走,直至逼近最小值点。
    • 假设我们以如下图点为初始化点,该点处的斜率的符号是负的,即 d J ( w ) d w &lt; 0 \frac{dJ(w)}{dw}&lt;0 dwdJ(w)<0,所以接下来会向右走一步:
      在这里插入图片描述
    • 整个梯度下降法的迭代过程就是不断地向右走,即朝着最小值点方向走。
  • 逻辑回归的代价函数(成本函数) J ( w , b ) J(w, b) J(w,b) 是含有两个参数的。

    • w = w − α ∂ J ( w , b ) ∂ w w=w-\alpha\frac{\partial J(w, b)}{\partial w} w=wαwJ(w,b)
    • b = b − α ∂ J ( w , b ) ∂ b b=b-\alpha\frac{\partial J(w, b)}{\partial b} b=bαbJ(w,b)
    • ∂ \partial 表示求偏导符号, ∂ J ( w , b ) ∂ w \frac{\partial J(w, b)}{\partial w} wJ(w,b) 就是函数 J ( w , b ) J(w, b) J(w,b) w w w 求偏导,在代码中我们会使用 d w dw dw 表示这个结果;
    • ∂ J ( w , b ) ∂ w \frac{\partial J(w, b)}{\partial w} wJ(w,b) 就是函数 J ( w , b ) J(w, b) J(w,b) b b b 求偏导,在代码中我们会使用 d b db db 表示这个结果;
    • 小写字母 d d d 用在求导数,即函数只有一个参数, 偏导数符号 ∂ \partial 用在求偏导,即函数含有两个以上的参数。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值