算法工程师修仙之路:Mxnet(三)

深度学习基础

  • 尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。

  • 因此,我们将介绍如何只利用 NDArray 和 autograd 来实现一个线性回归的训练。

线性回归的从零开始实现


  • 首先,导入所需的包或模块,其中的 matplotlib 包可用于作图:

    from IPython import display
    from matplotlib import pyplot as plt 
    from mxnet import autograd, nd
    import random
    

生成数据集

  • 我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。

  • 设训练数据集样本数为1000,输入个数(特征数)为2。

    • 给定随机生成的批量样本特征: X ∈ R 1000 × 2 \boldsymbol{X} \in \mathbb{R}^{1000 \times 2} XR1000×2
    • 我们使用线性回归模型真实权重和偏差: w = [ 2 , − 3.4 ] ⊤ \boldsymbol{w}=[2,-3.4]^{\top} w=[2,3.4] b = 4.2 b=4.2 b=4.2
    • 以及一个随机噪声项: ϵ \epsilon ϵ
    • 噪声项 ϵ \epsilon ϵ 服从均值为0、标准差为0.01的正态分布。
    • 噪声代表了数据集中无意义的干扰。
    • 生成标签: y = X w + b + ϵ \boldsymbol{y}=\boldsymbol{X} \boldsymbol{w}+b+\epsilon y=Xw+b+ϵ
  • 下面,让我们生成数据集:

    # 生成数据集
    # features 的每一行是一个长度为2的向量,而 labels 的每一行是一个长度为1的向量(标量)。
    num_inputs = 2
    num_examples = 1000
    true_w = [2, -3.4]
    true_b = 4.2
    features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    labels += nd.random.normal(scale=0.01, shape=labels.shape)
    print(features[0], labels[0])
    """
    Output:
    [1.1630785 0.4838046]
    <NDArray 2 @cpu(0)>
    [4.879625]
    <NDArray 1 @cpu(0)>
    """
    
  • 通过生成第二个特征 features[:, 1] 和标签 labels 的散点图,可以更直观地观察两者间的线性关系:

    # 生成第二个特征 features[:, 1] 和标签 labels 的散点图
    def use_svg_display():
        # 用矢量图显示
        display.set_matplotlib_formats('svg')
    
    def set_figsize(figsize=(3.5, 2.5)):
        use_svg_display()
        # 设置图的尺寸
        plt.rcParams['figure.figsize'] = figsize
    
    set_figsize()
    # 加分号只显示图
    plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);
    plt.show()
    

在这里插入图片描述

读取数据

  • 在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。

  • 我们定义一个函数使其每次返回 batch_size(批量大小)个随机样本的特征和标签:

    # 定义一个函数:它每次返回 batch_size(批量大小)个随机样本的特征和标签。
    def data_iter(batch_size, features, labels):
        num_examples = len(features)
        indices = list(range(num_examples))
        # 样本的读取顺序是随机的
        random.shuffle(indices)
        for i in range(0, num_examples, batch_size):
            j = nd.array(indices[i: min(i + batch_size, num_examples)])
            # take 函数根据索引返回对应元素
            yield features.take(j), labels.take(j)
    
  • 让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

    # 读取第一个小批量数据样本并打印
    batch_size = 10
    
    for x, y in data_iter(batch_size, features, labels):
        print(x, y)
        break
    """
    Output:
    [[-0.511572    0.3929431 ]
     [ 0.14603852 -1.4237237 ]
     [ 0.53989464 -0.8063781 ]
     [ 1.527508   -0.42868343]
     [-1.0910612   0.24606876]
     [-1.2520171   0.2591413 ]
     [ 0.8395475  -0.8393784 ]
     [ 0.9821262  -0.17373237]
     [ 0.99923676 -0.86133176]
     [ 0.47207657 -0.04626406]]
    <NDArray 10x2 @cpu(0)>
    [1.8385592  9.3246     8.017159   8.719315   1.1776838  0.83230937
     8.733551   6.7600207  9.121296   5.3175707 ]
    <NDArray 10 @cpu(0)>
    """
    

初始化模型参数

  • 我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0:

    # 我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。
    w = nd.random.normal(scale=0.01, shape=(num_inputs, 1))
    b = nd.zeros(shape=(1,))
    
  • 模型训练中需要对这些参数求梯度来迭代参数的值,因此我们需要创建它们的梯度:

    # 创建它们的梯度
    w.attach_grad()
    b.attach_grad()
    

定义模型

  • 下面是线性回归的矢量计算表达式的实现,我们使用 dot 函数做矩阵乘法

    # 我们使用 dot 函数做矩阵乘法。
    def linreg(X, w, b):
        return nd.dot(X, w) + b
    

定义损失函数

  • 使用平方损失来定义线性回归的损失函数。

  • 在实现中,我们需要把真实值 y y y 变形成预测值 y ^ \hat y y^ 的形状。

    # 定义损失函数
    # 以下函数返回的结果和 y_hat 的形状相同。
    def square_loss(y_hat, y):
        return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
    

定义优化算法

  • sgd 函数实现了小批量随机梯度下降算法,它通过不断迭代模型参数来优化损失函数。

  • 自动求梯度模块计算得来的梯度是一个批量样本的梯度和,我们将它除以批量大小来得到平均值:

    def sgd(params, lr, batch_size): 
        for param in params:
            param[:] = param - lr * param.grad / batch_size
    

训练模型

  • 在训练中,我们将多次迭代模型参数。

  • 在每次迭代中,我们根据当前读取的小批量数据样本(特征 X X X 和标签 y y y),通过调用反向函数backward 计算小批量随机梯度,并调用优化算法 sgd 迭代模型参数。

  • 由于我们之前设批量大小 batch_size 为10,每个小批量的损失 l l l 的形状为(10, 1)。由于变量 l l l 并不是一个标量,运行 l . b a c k w a r d ( ) l.backward() l.backward() 将对 l l l 中元素求和得到新的变量,再求该变量有关模型参数的梯度。

  • 在一个迭代周期(epoch)中,我们将完整遍历一遍 data_iter 函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。

  • 迭代周期个数 num_epochs 和学习率 lr 都是超参数,分别设3和0.03。

  • 在实践中,大多超参数都需要通过反复试错来不断调节,虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。

    # 训练模型的超参数设置
    lr = 0.03
    num_epochs = 3
    net = linreg
    loss = square_loss
    
    # 训练模型一共需要 num_epochs 个迭代周期
    for epoch in range(num_epochs):
        # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。
        # X 和 y 分别是小批量样本的特征和标签
        for X, y in data_iter(batch_size, features, labels):
            with autograd.record():
                # l 是有关小批量 X 和 y 的损失
                l = loss(net(X, w, b), y)
            # 小批量的损失对模型参数求梯度
            l.backward()    
            # 使用小批量随机梯度下降迭代模型参数
            sgd([w, b], lr, batch_size) 
        train_l = loss(net(features, w, b), labels)
        print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))
    """
    Output:
    epoch 1, loss 0.034922
    epoch 2, loss 0.000121
    epoch 3, loss 0.000049
    """
    
    # 训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。
    print(true_w, w)
    print(true_b, b)
    """
    Output:
    [2, -3.4]
    [[ 1.9990884]
     [-3.3994849]]
    <NDArray 2x1 @cpu(0)>
    4.2
    [4.2002444]
    <NDArray 1 @cpu(0)>
    """
    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值