连续信号的傅里叶变换总结

1,周期信号的傅里叶级数

这里省略正余弦表达式,只给出指数表达式。
先给出狄利赫里条件:(1)在任何周期内, f ( t ) f(t) f(t)须绝对可积;(2)在任一有限区间中, f ( t ) f(t) f(t)只能取有限个最大值或最小值;(3)在任何有限区间上, f ( t ) f(t) f(t)只能有有限个第一类间断点。
f ( t ) f(t) f(t)周期为 T 1 {T_1} T1 ,满足狄利赫里条件,则
其中: f ( t ) = ∑ n = − ∞ ∞ F n e j n w 1 t f(t) = \sum\limits_{n = - \infty }^\infty {{F_n}{e^{jn{w_1}t}}} f(t)=n=Fnejnw1t
如果将 n w 1 n{w_1} nw1 F n {F_n} Fn n = − ∞ , . . . , − 2 , − 1 , 0 , 1 , 2 , . . . , ∞ n = - \infty ,..., - 2, - 1,0,1,2,...,\infty n=,...,2,1,0,1,2,...,)一一对应,则可以得到离散的谱线,分为幅度谱和相位谱。

2,非周期信号的傅里叶变换

假设周期 T 1 → ∞ {T_1} \to \infty T1,并且满足狄利赫里条件,则上式可变为
T 1 F n = ∫ − ∞ ∞ f ( t ) e − j n w 1 t d t {T_1}{F_n} = \int_{ - \infty }^\infty {f(t){e^{ - jn{w_1}t}}dt} T1Fn=f(t)ejnw1tdt
因为 w 1 → 0 {w_1} \to 0 w10,根据1中所述,离散谱线间隔将趋近0,于是离散变连续, n w 1 → w n{w_1} \to w nw1w
我们令 F ( j w ) = T 1 F n = ∫ − ∞ ∞ f ( t ) e − j w t d t F(jw) = {T_1}{F_n} = \int_{ - \infty }^\infty {f(t){e^{ - jwt}}dt} F(jw)=T1Fn=f(t)ejwtdt称为 f ( t ) f(t) f(t)的傅里叶变换,也叫频谱密度函数,是一个连续函数
同时 f ( t ) = 1 2 π ∫ − ∞ ∞ F ( j w ) e j w t d w f(t) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F(jw){e^{jwt}}dw} f(t)=2π1F(jw)ejwtdw称为傅里叶逆变换。

3,周期信号的傅里叶变换

周期信号除了傅里叶级数也可以用傅里叶变换表示。
假设 f ( t ) f(t) f(t)是以 T 1 {T_1} T1为周期的周期函数,它在一个周期内截断得到 f T ( t ) {f_T}(t) fT(t)
f T ( t ) ↔ F T ( j w ) {f_T}(t) \leftrightarrow {F_T}(jw) fT(t)FT(jw)
由于 f ( t ) = ∑ k = − ∞ ∞ f T ( t − k T 1 ) = f T ( t ) ∗ ∑ k = − ∞ ∞ δ ( t − k T 1 ) f(t) = \sum\limits_{k = - \infty }^\infty {{f_T}(t - k{T_1})} = {f_T}(t) * \sum\limits_{k = - \infty }^\infty {\delta (t - k{T_1})} f(t)=k=fT(tkT1)=fT(t)k=δ(tkT1)
F ( j w ) = F T ( j w ) 2 π T 1 ∑ k = − ∞ ∞ δ ( w − 2 π k T 1 ) = w 1 ∑ k = − ∞ ∞ F T ( j k w 1 ) δ ( w − k w 1 ) F(jw) = {F_T}(jw)\frac{{2\pi }}{{{T_1}}}\sum\limits_{k = - \infty }^\infty {\delta (w - \frac{{2\pi k}}{{{T_1}}})} = {w_1}\sum\limits_{k = - \infty }^\infty {{F_T}(jk{w_1})\delta (w - k{w_1})} F(jw)=FT(jw)T12πk=δ(wT12πk)=w1k=FT(jkw1)δ(wkw1)
可以看到周期函数的傅里叶变换是冲激函数在对应的 F T ( j k w 1 ) {F_T}(jk{w_1}) FT(jkw1)上的采样,也是一个离散谱线

4,拉普拉斯变换

如果信号不满足狄利赫里条件(1),即不满足绝对可积,则无法对其进行傅里叶变换。但是如果我们用一个实指数信号 e − σ t {e^{ - \sigma t}} eσt f ( t ) f(t) f(t)相乘,只要 σ \sigma σ的值选择得当,使 f ( t ) e − σ t f(t){e^{ - \sigma t}} f(t)eσt满足绝对可积,就可以对其进行傅里叶分析了。
记拉普拉斯变换 L ( s ) = F ( σ + j w ) = ∫ − ∞ ∞ f ( t ) e − σ t e − j w t d t = ∫ − ∞ ∞ f ( t ) e − s t d t L(s) = F(\sigma + jw) = \int_{ - \infty }^\infty {f(t){e^{ - \sigma t}}{e^{ - jwt}}dt = } \int_{ - \infty }^\infty {f(t){e^{ - st}}dt} L(s)=F(σ+jw)=f(t)eσtejwtdt=f(t)estdt
其中 s = σ + j w s = \sigma + jw s=σ+jw
拉普拉斯逆变换 f ( t ) = 1 2 π j ∫ σ − j ∞ σ + j ∞ L ( s ) e s t d s f(t) = \frac{1}{{2\pi j}}\int_{\sigma - j\infty }^{\sigma + j\infty } {L(s){e^{st}}ds} f(t)=2πj1σjσ+jL(s)estds
傅里叶变换将时域转换到频域,而拉普拉斯变换将时域转换到复频域(s域)。
满足绝对可积条件 ∫ − ∞ ∞ ∣ f ( t ) ∣ e − σ t &lt; ∞ \int_{ - \infty }^\infty {\left| {f(t)} \right|{e^{ - \sigma t}}} &lt; \infty f(t)eσt< σ \sigma σ的取值范围称为拉氏变换的收敛域ROC,一般在求解拉普拉斯变换时可以得到其收敛域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值