多项式分布

多项式分布式二项式分布的推广。


在n次独立重复试验中,每次试验可能的结果只有两种,发生和不发生,发生标记为事件A,每次试验发生的概率为 p(A) p ( A ) ,n次试验中时间A出现k的概率符合二项式分布概率。这个概率为 Cknpk(1p)nk C n k p k ( 1 − p ) n − k


假设随机试验有k个可能的结果 A1,A2,...Ak A 1 , A 2 , . . . A k ,每个结果出现的次数为随机变量 X1,X2,...Xn X 1 , X 2 , . . . X n ,每个结果出现的概率为 p1,p2,...pk p 1 , p 2 , . . . p k
n次独立重复试验中随机事件出现的次数分别为 n1,n2,...,nk n 1 , n 2 , . . . , n k 的概率符合多项式分布概率。

P(X1=n1,X2=n2,...Xk=nk)=n!n1!n2!...nk!pn11pn22...pnkk. P ( X 1 = n 1 , X 2 = n 2 , . . . X k = n k ) = n ! n 1 ! n 2 ! . . . n k ! p 1 n 1 p 2 n 2 . . . p k n k .

(i=ki=1ni=n) ( ∑ i = 1 i = k n i = n )

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页