Andrew Ng deeplearning.ai专项课程第四课Convolutional Neural Networks第二周笔记

本文探讨了深度卷积模型的典型案例研究,包括经典网络、残差网络(ResNets)的工作原理及其优势,并介绍了网络中的网络及1x1卷积的概念。此外,还讨论了Inception网络的设计动机与结构,提供了使用卷积神经网络的实际建议,如开源实现、迁移学习和数据增强等。
摘要由CSDN通过智能技术生成

第二周 Deep convolutional models:case studies

第一节 Case studies

2.1 Why look at case studies?


2.2 Classic Networks


2.3 ResNets


2.4 Why ResNets Work


2.5 Networks in Networks and 1x1 Convolutions


2.6 Inception Network Motivation


2.7 Inception Network


第二节 Practical advices for using ConvNets

2.8 Using Open-Source Implementation


2.9 Transfer Learning


2.10 Data Augmentation


2.11 State of Computer Vision


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值