待字闺中之最长等差数列分析

原题

给定未排序的数组,请给出方法找到最长的等差数列。

分析

题目描述比较简单,但是有一个问题我们需要首先搞清楚:等差数列中的数字,是否要和原始数组中的顺序一致。题目中,并没有说明,这个就需要大家在面试的过程中和面试官进行交流。我们在这里对两种情况都进行讨论

保证数字的顺序

等差数列是要求相邻两个元素之间的差是相同的。那我们可以记录下来数组中任意两个数的差,并且记录下来。对于数组A,记录A[j]-A[i],其中i<j。这里采用hashmap来记录,key就是A[j]-A[i],value是所有差等于的A[j]-A[i]的(i,j)位置对。构造hashmap的过程是O(n^2)的。然后,遍历hashmap的每一个value,对位置对按照起始位置进行排序,再进行一次遍历就可以得到最长的等差数列。如下面的数组:{5,4,3,4,7,8}

构造hashmap如下:

  • -1=>(0,1)(1,2)

  • 1=>(2,3)(4,5)

  • 3=>(3,4)

上面已经排好序,对于第一个,找到等差数列0,1,2对应数字诶5,4,3.第二个,3和4位置没有连起来,不够成等差数列。方法平均时间复杂度为O(n^2),空间复杂度为O(n^2).

无需保证数字的顺序

不需要保证数字的顺序与原来数组一致,如何找到最长的等差数列呢?原来的数组是无序的,我们先对数组进行排序,最终的一定是排序之后序列的子序列。然后,我们采用动态规划的方法解决这个问题。

我们假设dp[i][j]表示以A[i]A[j]开始的数列的长度,dp[i][j]如何表示呢?dp[i][j]=dp[j][k]+1,当A[j]-A[i]=A[k]-A[j],及A[k]+A[i]=2*A[j]。根据dp[i][j]的定义,我们知道dp[x][n-1]=2,也就是最后一列是2,数列只有A[x]和A[n-1]两个元素。首先,j从n-2,开始向前遍历,对于每一个,找到i和k,满足A[k]+A[i]=2*A[j],则有dp[i][j]=dp[j][k]+1,若没有,则dp[i][j]就为2.

这里找i和k,有一个小技巧,如下:初始i=j-1,k=j+1,然后分别向两边遍历,如果A[k]+A[i]2*A[j]则i--。大家还是参考代码吧:

int lengthOfLongestAP(vector<int>& data)
{
	int length = data.size(),i,j,k,res = 2;
	if(length <= 2)return length;
	sort(data.begin(),data.end());
	vector< vector<int> >dp(length);
	for(i = 0;i < length;i++)
	{
		vector<int> tmp(length,2);//长度至少是2
		dp[i] = tmp;
	}
	for (j = length - 2;j >= 1;--j)
	{
		i = j - 1;
		k = j + 1;
		while (i >= 0 && k < length)
		{
			if (data[i] + data[k] > 2*data[j])
			{
				dp[i][j] = 2;
				i--;
			}
			else if (data[i] + data[k] < 2*data[j])
			{
				k++;
			}
			else
			{
				dp[i][j] = dp[j][k] + 1;
				if(dp[i][j] > res)res = dp[i][j];
				i--;
				k++;
			}
		}
	}
	return res;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值