矩阵分解(基础)

常用的矩阵分解:
作为笔记, 肯定不能把推导过程也全记下来, 只能尽可能把核心思想简化归纳

1. 满秩分解(最大秩分解)

小知识点提示:

  • 初等行变换不改变矩阵列向量的线性相关性
  • 初等列变换不改变矩阵行向量的线性相关性

满 秩 分 解 : A = B ⋅ C 满秩分解: A = B\cdot C :A=BC

1.2 通过初等行变换构造行阶梯形: A ~ \tilde{A} A~

{ B 由 A 的 r 个 线 性 无 关 列 组 成 C 由 A ~ 的 r 个 线 性 无 关 行 组 成 \begin{cases} B由A的r个线性无关\bold{列}组成 \\ C由\tilde{A}的r个线性无关\bold{行}组成 \end{cases} {BAr线CA~r线

1.2 通过初等列变换构造行阶梯形: A ~ \tilde{A} A~

{ B 由 A ~ 的 r 个 线 性 无 关 列 组 成 C 由 A 的 r 个 线 性 无 关 行 组 成 \begin{cases} B由\tilde{A}的r个线性无关\bold{列}组成 \\ C由A的r个线性无关\bold{行}组成 \\ \end{cases} {BA~r线CAr线

2. 奇异值分解(Singular Value Decomposition, SVD)

小知识点提示:

  • 正规矩阵属于不同特征值的特征向量彼此正交
  • A A H AA^H AAH A H A A^HA AHA具有相同的非零特征值, 且所有特征值都大于等于0

奇 异 值 分 解 : A = U [ Δ 0 0 0 ] V H Δ = [ σ 1 σ 2 ⋱ σ k ] , σ i 为 A 的 奇 异 值 { U = [ ξ 1 ξ 2 ⋯ ξ m ] , U 由 A A H 的 m 个 特 征 值 对 应 的 单 位 特 征 向 量 组 成 ( 特 征 值 的 位 置 顺 序 要 与 奇 异 值 位 置 顺 序 对 应 , 0 特 征 值 最 后 ) V = [ ξ 1 ′ ξ 2 ′ ⋯ ξ n ′ ] , V 由 A A H 的 n 个 特 征 值 对 应 的 单 位 特 征 向 量 组 成 ( 特 征 值 的 位 置 顺 序 要 与 奇 异 值 位 置 舜 宇 对 应 , 0 特 征 值 最 后 ) 奇异值分解: A=U\begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix}V^H \\ \Delta = \begin{bmatrix} \sigma_1 & \\ & \sigma_2 \\ & & \ddots \\ & & & \sigma_k \\ \end{bmatrix}, \sigma_i为A的奇异值 \begin{cases} U=\begin{bmatrix} \xi_1 & \xi_2 & \cdots & \xi_m \end{bmatrix}, U由AA^H的m个特征值对应的单位特征向量组成 (特征值的位置顺序要与奇异值位置顺序对应, 0特征值最后)\\ V=\begin{bmatrix} \xi_1' & \xi_2' & \cdots & \xi_n' \end{bmatrix} ,V由AA^H的n个特征值对应的单位特征向量组成(特征值的位置顺序要与奇异值位置舜宇对应, 0特征值最后) \end{cases} :A=U[Δ000]VHΔ=σ1σ2σk,σiA{U=[ξ1ξ2ξm],UAAHm(,0)V=[ξ1ξ2ξn],VAAHn(,0)

3. 正规矩阵的谱分解

小知识点提示:

  • 正规矩阵属于不同特征值的特征向量彼此正交

A = ( α 1 α 2 ⋯ α n ) [ λ 1 λ 2 ⋱ λ n ] ( α 1 H α 2 H ⋮ α n H ) = λ 1 α 1 α 1 H + λ 2 α 2 α 2 H + ⋯ + λ n α n α n H = λ 1 P 1 + λ 2 P 2 + ⋯ + λ n P n A= \begin{pmatrix} \alpha_1 &\alpha_2 & \cdots & \alpha_n \end{pmatrix} \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ && \ddots \\ &&& \lambda_n \end{bmatrix} \begin{pmatrix} \alpha_1^H \\ \alpha_2^H \\ \vdots \\ \alpha_n^H \end{pmatrix} = \lambda_1\alpha_1\alpha_1^H+\lambda_2\alpha_2\alpha_2^H+\cdots+\lambda_n\alpha_n\alpha_n^H \\ =\lambda_1P_1+\lambda_2P_2+\cdots+\lambda_nP_n A=(α1α2αn)λ1λ2λnα1Hα2HαnH=λ1α1α1H+λ2α2α2H++λnαnαnH=λ1P1+λ2P2++λnPn

在这, 只需要简单的求出正规矩阵的n个特征值, 然后再分别求出对应的单位特征向量. 由n个相互正交的单位特征向量构成的矩阵必然是酉矩阵(正交矩阵).

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanqiliang630

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值