矩阵分解相关知识点总结

〇、Gauss消去法

  对于 n n n元线性方程组
(0) A x = b \bm{A}\bm{x}=\bm{b}\tag{0} Ax=b(0)

其中, A = ( a i j ) n × n \bm{A}=(a_{ij})_{n \times n} A=(aij)n×n x = ( ξ 1 , ξ 2 , ⋯   , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_n)^{\rm T} x=(ξ1,ξ2,,ξn)T b = ( b 1 , b 2 , ⋯   , b n ) T \bm{b}=(b_1,b_2,\cdots,b_n)^{\rm T} b=(b1,b2,,bn)T。Gauss消去法的基本思想是化系数矩阵 A \textbf{\textit{A}} A为上三角矩阵,或化增广矩阵 [ A b ] \left[\begin{array}{c|c}\bm{A}&\bm{b}\end{array}\right] [Ab]为上阶梯形矩阵以求其解,这个过程就叫Gauss消元。

  Gauss消元过程能够进行到底的条件是当且仅当 A \bm{A} A的各阶顺序主子式都不为零,即:
Δ r ≠ 0 ( r = 1 , 2 , ⋯   , n − 1 ) \color{#F0F}\Delta_r\neq0\quad(r=1,2,\cdots,n-1) Δr̸=0(r=1,2,,n1)

一、矩阵的三角分解

三 角 分 解 { A = L D U LDU分解 A = L ( D U ) = L U ^ Doolittle分解 A = ( L D ) U = L ^ U Crout分解 三角分解 \begin{cases} A=LDU& \text {LDU分解} \\ A=L(DU)=L\hat U & \text {Doolittle分解}\\A=(LD)U=\hat LU& \text {Crout分解} \end{cases} A=LDUA=L(DU)=LU^A=(LD)U=L^ULDU分解Doolittle分解Crout分解

  三角分解又称作LU分解或LR分解。在上式中, L L L是单位下三角矩阵, D D D是对角矩阵, U U U是单位上三角矩阵

分解过程:
(1) A = A ( 0 ) = L 1 A ( 1 ) = L 1 L 2 A ( 2 ) = ⋯ = L 1 L 2 ⋯ L n − 1 A ( n − 1 ) = L A ( n − 1 ) \color{#F00}A=A^{(0)}=L_1A^{(1)}=L_1L_2A^{(2)}=\cdots=L_1L_2\cdots L_{n-1}A^{(n-1)}=LA^{(n-1)} \tag{1} A=A(0)=L1A(1)=L1L2A(2)==L1L2Ln1A(n1)=LA(n1)(1)

L 1 = [ 1 c 21 1 ⋮ ⋱ c n 1 1 ] L_1=\begin{bmatrix} 1 \\c_{21} & 1 \\ \vdots & & \ddots \\c_{n1} & & & 1 \end{bmatrix} L1=1c21cn111 L 2 = [ 1 1 c 32 1 ⋮ ⋱ c n 2 1 ] L_2=\begin{bmatrix} 1 \\ & 1 \\ & c_{32} & 1 \\ & \vdots & & \ddots\\ & c_{n2} & & & 1\end{bmatrix} L2=11c32cn211 ⋯ \cdots L r = [ 1 ⋱ 1 c r + 1 , r 1 ⋮ ⋱ c n r 1 ] L_r=\begin{bmatrix} 1 \\ & \ddots \\ & & 1 \\ & & c_{r+1,r} & 1\\ & & \vdots & &\ddots \\ & & c_{nr} & & & 1\end{bmatrix} Lr=11cr+1,rcnr11 L n − 1 = [ 1 1 ⋱ 1 c n , n − 1 1 ] L_{n-1}=\begin{bmatrix} 1 \\ & 1 \\ & & \ddots \\ & & & 1\\ & & & c_{n,n-1} & 1\end{bmatrix} Ln1=111cn,n11Frobenius矩阵,其中空白处全为   0   \,0\, 0 c i r = a i r ( r − 1 ) a r r ( r − 1 ) , ( r = 1 , 2 , ⋯   , n − 1 ) , ( i = r + 1 , r + 2 , ⋯   , n ) \color{#F0F}c_{ir}=\cfrac{a_{ir}^{(r-1)}}{a_{rr}^{(r-1)}},(r=1,2,\cdots,n-1),(i=r+1,r+2,\cdots,n) cir=arr(r1)air(r1),(r=1,2,,n1),(i=r+1,r+2,,n) L r − 1 = [ 1 ⋱ 1 − c r + 1 , r 1 ⋮ ⋱ − c n r 1 ] L_r^{-1}=\begin{bmatrix} 1 \\ & \ddots \\ & & 1 \\ & & -c_{r+1,r} & 1\\ & & \vdots & &\ddots \\ & & -c_{nr} & & & 1\end{bmatrix} Lr1=11cr+1,rcnr11

L = L 1 L 2 ⋯ L ( n − 1 ) = [ 1 c 21 1 ⋮ ⋮ ⋱ c n − 1 , 1 c n − 1 , 2 ⋯ 1 c n 1 c n 2 ⋯ c n , n − 1 1 ] L=L_1L_2\cdots L_{(n-1)}=\begin{bmatrix} 1 \\[2ex] c_{21} & 1 \\[2ex] \vdots & \vdots & \ddots \\[2ex] c_{n-1,1} & c_{n-1,2} & \cdots & 1 \\[2ex] c_{n1} & c_{n2} & \cdots & c_{n,n-1} & 1\end{bmatrix} L=L1L2L(n1)=1c21cn1,1cn11cn1,2cn21cn,n11是一个单位下三角矩阵, A ( n − 1 ) = L n − 1 − 1 ⋯ L 2 − 1 L 1 − 1 A ( 0 ) = L − 1 A A^{(n-1)}=L_{n-1}^{-1}\cdots L_2^{-1}L_1^{-1}A^{(0)}=L^{-1}A A(n1)=Ln11L21L11A(0)=L1A是一个上三角矩阵,可以分解成一个对角矩阵( D D D)和一个单位上三角矩阵( U U U)。

二、矩阵的Cholesky分解

  当 A A A为实对称正定矩阵时,有
A = L D U = A T = ( L D U ) T = U T D L T , D = d i a g ( d 1 , d 2 , ⋯   , d n ) A=LDU=A^{\text T}=(LDU)^{\rm T}=U^{\rm T}DL^{\rm T},\quad D={\rm{diag}}(d_1,d_2,\cdots,d_n) A=LDU=AT=(LDU)T=UTDLT,D=diag(d1,d2,,dn)

即有: L = U T L=U^{\rm T} L=UT U = L T U=L^{\rm T} U=LT,令 D ~ = d i a g ( d 1 , d 2 , ⋯   , d n ) \tilde D={\rm{diag}}(\sqrt{d_1},\sqrt{d_2},\cdots,\sqrt{d_n}) D~=diag(d1 ,d2 ,,dn ),则有:
(2) A = L D L T = L D ~ 2 L T = ( L D ~ ) ( D ~ L T ) = ( L D ~ ) ( L D ~ ) T = G G T \color{#F00}A=LDL^{\rm T}=L\tilde D^2L^{\rm T}=(L\tilde D)(\tilde DL^{\rm T})=(L\tilde D)(L\tilde D)^{\rm T}=GG^{\rm T}\tag{2} A=LDLT=LD~2LT=(LD~)(D~LT)=(LD~)(LD~)T=GGT(2)

其中, G = L D ~ G=L\tilde D G=LD~为下三角矩阵。上式即为矩阵的Cholesky分解,又称平方根分解或对称三角分解

  Cholesky分解过程中,可以根据以下递推公式计算 G G G矩阵中每个元素的值:
g i j = { ( a i i − ∑ k = 1 i − 1 g i k 2 ) 1 / 2 ( i = j ) 1 g j j ( a i j − ∑ k = 1 j − 1 g i k g j k ) ( i &gt; j ) 0 ( i &lt; j ) \color{#F0F}g_{ij}=\begin{cases} (a_{ii}-\sum\limits_{k=1}^{i-1}g_{ik}^2)^{1/2} &amp; (i=j) \\[2ex] \cfrac{1}{g_{jj}}(a_{ij}-\sum\limits_{k=1}^{j-1}g_{ik}g_{jk}) &amp;(i&gt;j) \\[2ex] \quad0 &amp; (i&lt;j) \end{cases} gij=(aiik=1i1gik2)1/2gjj1(aijk=1j1gikgjk)0(i=j)(i>j)(i<j)

当然也可以先对矩阵 A A A做LDU分解,然后取 G = L D ~ G=L\tilde D G=LD~

三、矩阵的QR分解

3.1、Givens矩阵与Givens变换

  设非零列向量 x ∈ R n \bm{x}\in {\bf{R}}^n xRn及单位列向量 z ∈ R n \bm{z}\in {\bf{R}}^n zRn,存在有限个Givens矩阵的乘积,记作 T \bm{T} T,使得
(3) T x = ∣ x ∣ z \color{#F00}\bm{T}\bm{x}=|\bm{x}|\bm{z}\tag{3} Tx=xz(3)

上式即为Givens变换,也称初等旋转变换,其中Givens矩阵,也称初等旋转矩阵,记作 T i j = T i j ( c , s ) = [ I c s I − s c I ] \color{#F0F}\bm{T}_{ij}=\bm{T}_{ij}(c,s)=\begin{bmatrix} \bm{I} \\[1ex] &amp; c &amp; &amp; s &amp; \\[1.2ex] &amp; &amp; \bm{I} \\[1.2ex] &amp; -s&amp; &amp; c \\[1.2ex] &amp; &amp; &amp; &amp; \bm{I} \end{bmatrix} Tij=Tij(c,s)=IcsIscI T = T 1 n T 1 , n − 1 ⋯ T 13 T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{13}\bm{T}_{12} T=T1nT1,n1T13T12

  对于非零列向量 x = ( ξ 1 , ξ 2 , ⋯ &ThinSpace; , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_n)^{\rm T} x=(ξ1,ξ2,,ξn)T,及单位列向量 z = e 1 = ( 1 , 0 , ⋯ &ThinSpace; , 0 ) T \bm{z}=\bm{e}_1=(1,0,\cdots,0)^{\rm T} z=e1=(1,0,,0)T,其Givens变换过程如下:

  • 首先对 x \bm{x} x构造Givens矩阵 T 12 ( c , s ) = [ c s − s c I ] \bm{T}_{12}(c,s)=\begin{bmatrix} c&amp;s \\-s &amp; c\\ &amp; &amp; \bm{I} \end{bmatrix} T12(c,s)=csscI,其中 c = ξ 1 ξ 1 2 + ξ 2 2 &ThinSpace; , &ThinSpace; s = ξ 2 ξ 1 2 + ξ 2 2 c=\cfrac{\xi_1}{\sqrt{\xi_1^2+\xi_2^2}}\,,\,s=\cfrac{\xi_2}{\sqrt{\xi_1^2+\xi_2^2}} c=ξ12+ξ22 ξ1,s=ξ12+ξ22 ξ2,有
    T 12 x = ( ξ 1 2 + ξ 2 2 , 0 , ξ 3 , ⋯ &ThinSpace; , ξ n ) T \bm{T}_{12}\bm{x}=(\sqrt{\xi_1^2+\xi_2^2},0,\xi_3,\cdots,\xi_n)^{\rm T} T12x=(ξ12+ξ22 ,0,ξ3,,ξn)T

  • 再对 T 12 x \bm{T}_{12}\bm{x} T12x构造Givens矩阵 T 13 ( c , s ) = [ c s 1 − s c I ] \bm{T}_{13}(c,s)=\begin{bmatrix} c&amp; &amp;s \\ &amp;1&amp; \\-s &amp; &amp; c\\ &amp; &amp; &amp; \bm{I} \end{bmatrix} T13(c,s)=cs1scI,其中 c = ξ 1 2 + ξ 2 2 ξ 1 2 + ξ 2 2 + ξ 3 2 &ThinSpace; , &ThinSpace; s = ξ 3 ξ 1 2 + ξ 2 2 + ξ 3 2 c=\cfrac{\sqrt{\xi_1^2+\xi_2^2}}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}}\,,\,s=\cfrac{\xi_3}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}} c=ξ12+ξ22+ξ32 ξ12+ξ22 ,s=ξ12+ξ22+ξ32 ξ3,有
    T 13 ( T 12 x ) = ( ξ 1 2 + ξ 2 2 + ξ 3 2 , 0 , 0 , ξ 4 , ⋯ &ThinSpace; , ξ n ) T \bm{T}_{13}(\bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\xi_3^2},0,0,\xi_4,\cdots,\xi_n)^{\rm T} T13(T12x)=(ξ12+ξ22+ξ32 ,0,0,ξ4,,ξn)T

  • 如此下去,最后对 T 1 , n − 1 T 1 , n − 2 ⋯ T 13 T 12 x \bm{T}_{1,n-1}\bm{T}_{1,n-2}\cdots \bm{T}_{13}\bm{T}_{12}\bm{x} T1,n1T1,n2T13T12x构造Givens矩阵 T 1 n ( c , s ) = [ c s I − s c ] \bm{T}_{1n}(c,s)=\begin{bmatrix} c&amp; &amp;s \\ &amp; \bm{I}&amp; \\-s &amp; &amp; c \end{bmatrix} T1n(c,s)=csIsc,其中 c = ξ 1 2 + ⋯ + ξ n − 1 2 ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 &ThinSpace; , &ThinSpace; s = ξ n ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 \color{#F0F}c=\cfrac{\sqrt{\xi_1^2+\cdots+\xi_{n-1}^2}}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}}\,,\,s=\cfrac{\xi_n}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}} c=ξ12+ξ22++ξn12+ξn2 ξ12++ξn12 ,s=ξ12+ξ22++ξn12+ξn2 ξn,有
    T 1 n ( T 1 , n − 1 ⋯ T 12 x ) = ( ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 , 0 , ⋯ &ThinSpace; , 0 ) T \bm{T}_{1n}(\bm{T}_{1,n-1}\cdots \bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2},0,\cdots,0)^{\rm T} T1n(T1,n1T12x)=(ξ12+ξ22++ξn12+ξn2 ,0,,0)T

T = T 1 n T 1 , n − 1 ⋯ T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{12} T=T1nT1,n1T12,有 T x = ∣ x ∣ z = ∣ x ∣ e 1 \bm{T}\bm{x}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 Tx=xz=xe1,即通过有限个Givens矩阵 T &ThinSpace; \bm{T}\, T x &ThinSpace; \bm{x}\, x变换为与 z &ThinSpace; \bm{z}\, z同方向的向量。

3.2、Householder矩阵与Householder变换

  任意给定非零列向量 x ∈ R n &ThickSpace; ( n &gt; 1 ) \bm{x}\in {\bf{R}}^n\;(n&gt;1) xRn(n>1)及单位列向量 z ∈ R n \bm{z}\in {\bf{R}}^n zRn,则存在矩阵 H \bm{H} H,使得
(4) H = ∣ x ∣ z \color{#F00}\bm{H}=|\bm{x}|\bm{z}\tag{4} H=xz(4)

上式即为Householder变换,也称初等反射变换,其中 H = I − 2 u u T \color{#F0F}\bm{H}=\bm{I}-2\bm{uu}^{\rm T} H=I2uuT,为Householder矩阵,也称初等反射矩阵

  对于非零列向量 x = ( ξ 1 , ξ 2 , ⋯ &ThinSpace; , ξ n − 1 , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_{n-1},\xi_n)^{\rm T} x=(ξ1,ξ2,,ξn1,ξn)T及单位列向量 z = e 1 = ( 1 , 0 , ⋯ &ThinSpace; , 0 ) T \bm{z}=\textbf{\textit{e}}_1=(1,0,\cdots,0)^{\rm T} z=e1=(1,0,,0)T,其Householder变换过程如下:

  取 u = x − ∣ x ∣ z ∣ x − ∣ x ∣ z ∣ = x − ∣ x ∣ e 1 ∣ x − ∣ x ∣ e 1 ∣ \color{#F0F}\bm{u}=\cfrac{\bm{x}-|\bm{x}|\bm{z}}{|\bm{x}-|\bm{x}|\bm{z}|}=\cfrac{\bm{x}-|\bm{x}|\bm{e}_1}{|\bm{x}-|\bm{x}|\bm{e}_1|} u=xxzxxz=xxe1xxe1,其中 ∣ x ∣ = ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 |\bm{x}|=\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2} x=ξ12+ξ22++ξn12+ξn2 ,则 H = I − 2 u u T \bm{H}=\bm{I}-2\bm{uu}^{\rm T} H=I2uuT H x = ∣ x ∣ z = ∣ x ∣ e 1 \bm{Hx}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 Hx=xz=xe1,即通过Householder矩阵 H &ThinSpace; \bm{H}\, H x &ThinSpace; \bm{x}\, x变换为与 z &ThinSpace; \bm{z}\, z同方向的向量。

Givens矩阵 T i j &ThinSpace; \textbf{\textit{T}}_{ij}\, Tij具有如下性质Householder矩阵 H &ThinSpace; \textbf{\textit{H}}\, H具有如下性质
(1) T i j = − T i j T = − T i j − 1 \bm{T}_{ij}=-\bm{T}_{ij}^{\rm T}=-\bm{T}_{ij}^{-1} Tij=TijT=Tij1 H = H T = H − 1 \bm{H}=\bm{H}^{\rm T}=\bm{H}^{-1} H=HT=H1
(2) T i j 2 = − T i j T T i j = − T i j − 1 T i j = − I \bm{T}_{ij}^{2}=-\bm{T}_{ij}^{\rm T}\bm{T}_{ij}=-\bm{T}_{ij}^{-1}\bm{T}_{ij}=-\bm{I} Tij2=TijTTij=Tij1Tij=I H 2 = H T H = H − 1 H = I \bm{H}^2=\bm{H}^{\rm T}\bm{H}=\bm{H}^{-1}\bm{H}=\bm{I} H2=HTH=H1H=I
(3) d e t T i j = 1 \rm{det}\bm{T}_{ij}=1 detTij=1 d e t H = − 1 \rm{det}\bm{H}=-1 detH=1

(5) 初 等 旋 转 矩 阵 是 两 个 初 等 反 射 矩 阵 的 乘 积 , 即 有 T i j = H v H u \color{#F00}初等旋转矩阵是两个初等反射矩阵的乘积,即有\bm{T}_{ij}=\bm{H}_v\bm{H}_u\tag{5} Tij=HvHu(5)

3.3、QR分解

  设 A A A m × n m\times n m×n实(复)矩阵,且其 n n n个列线性无关,则 A A A有分解
(6) A = Q R \color{#F00}A=QR\tag{6} A=QR(6)

其中 Q Q Q m × n m\times n m×n实(复)矩阵,且满足 Q T Q = I Q^{\text T}Q=I QTQ=I Q H Q = I Q^{\text H}Q=I QHQ=I), R R R n n n阶实(复)可逆上三角矩阵。上式即为矩阵的QR分解,也称正交三角分解,该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的。

  对于任意的 n n n阶实可逆矩阵 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n,均可通过左连乘Givens矩阵(初等旋转矩阵)或左连乘Householder矩阵(初等反射矩阵),将其化为可逆上三角矩阵。

  完成矩阵的QR分解有三种常用的方法:Schmidt正交化方法,Givens变换方法和Householder变换方法。下面通过一个具体实例,将矩阵 A = [ 1 2 2 2 1 2 1 2 1 ] A=\begin{bmatrix} 1 &amp; 2 &amp; 2 \\ 2 &amp; 1 &amp; 2 \\ 1 &amp; 2 &amp; 1 \end{bmatrix} A=121212221分别用上述三种方法进行QR分解。

Schmidt正交化方法:

  令 a 1 = ( 1 , 2 , 1 ) T , &ThinSpace; a 2 = ( 2 , 1 , 2 ) T , &ThinSpace; a 3 = ( 2 , 2 , 1 ) T \bm{a}_1=(1,2,1)^{\rm T},\,\bm{a}_2=(2,1,2)^{\rm T},\,\bm{a}_3=(2,2,1)^{\rm T} a1=(1,2,1)T,a2=(2,1,2)T,a3=(2,2,1)T,将其Schmidt正交化可得:
b 1 = a 1 = ( 1 , 2 , 1 ) T b 2 = a 2 − ( a 2 , b 1 ) ( b 1 , b 1 ) b 1 = a 2 − b 1 = ( 1 , − 1 , 1 ) T b 3 = a 3 − ( a 3 , b 1 ) ( b 1 , b 1 ) b 1 − ( a 3 , b 2 ) ( b 2 , b 2 ) b 2 = a 3 − 1 3 b 2 − 7 6 b 1 = ( 1 2 , 0 , − 1 2 ) T \begin{array}{l}\bm{b}_1=\bm{a}_1=(1,2,1)^{\rm T}\\[2ex] \bm{b}_2=\bm{a}_2-\cfrac{(\bm{a}_2,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1=\bm{a}_2-\bm{b}_1=(1,-1,1)^{\rm T}\\[2ex] \bm{b}_3=\bm{a}_3-\cfrac{(\bm{a}_3,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1-\cfrac{(\bm{a}_3,\bm{b}_2)}{(\bm{b}_2,\bm{b}_2)}\bm{b}_2=\bm{a}_3-\cfrac{1}{3}\bm{b}_2-\cfrac{7}{6}\bm{b}_1=(\cfrac{1}{2},0,-\cfrac{1}{2})^{\rm T}\end{array} b1=a1=(1,2,1)Tb2=a2(b1,b1)(a2,b1)b1=a2b1=(1,1,1)Tb3=a3(b1,b1)(a3,b1)b1(b2,b2)(a3,b2)b2=a331b267b1=(21,0,21)T

进而有:
( a 1 , a 2 , a 3 ) = ( b 1 , b 2 , b 3 ) ⋅ C = ( b 1 , b 2 , b 3 ) [ 1 1 7 6 0 1 1 3 0 0 1 ] (\bm{a}_1,\bm{a}_2,\bm{a}_3)= (\bm{b}_1,\bm{b}_2,\bm{b}_3)\cdot C=(\bm{b}_1,\bm{b}_2,\bm{b}_3) \begin{bmatrix} 1 &amp; 1 &amp; \cfrac{7}{6} \\[2ex] 0 &amp; 1 &amp; \cfrac{1}{3} \\[2ex] 0 &amp; 0 &amp; 1 \end{bmatrix} (a1,a2,a3)=(b1,b2,b3)C=(b1,b2,b3)10011067311

  取:
q 1 = 1 ∣ b 1 ∣ ∣ b 1 ∣ = 1 6 ( 1 , 2 , 1 ) T q 2 = 1 ∣ b 2 ∣ ∣ b 2 ∣ = 1 3 ( 1 , − 1 , 1 ) T q 3 = 1 ∣ b 3 ∣ ∣ b 3 ∣ = 1 2 ( 1 , 0 , − 1 ) T \begin{array}{l}\bm{q}_1=\cfrac{1}{|\bm{b}_1|}|\bm{b}_1|=\cfrac{1}{\sqrt{6}}(1,2,1)^{\rm T}\\[2ex] \bm{q}_2=\cfrac{1}{|\bm{b}_2|}|\bm{b}_2|=\cfrac{1}{\sqrt{3}}(1,-1,1)^{\rm T}\\[2ex] \bm{q}_3=\cfrac{1}{|\bm{b}_3|}|\bm{b}_3|=\cfrac{1}{\sqrt{2}}(1,0,-1)^{\rm T}\end{array} q1=b11b1=6 1(1,2,1)Tq2=b21b2=3 1(1,1,1)Tq3=b31b3=2 1(1,0,1)T

  令:
Q = ( q 1 , q 2 , q 3 ) = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] R = d i a g ( ∣ b 1 ∣ , ∣ b 2 ∣ , ∣ b 3 ∣ ) ⋅ C = [ 6 0 0 0 3 0 0 0 2 ] [ 1 1 7 6 0 1 1 3 0 0 1 ] = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] \begin{array}{l} Q=(\bm{q}_1,\bm{q}_2,\bm{q}_3)= \begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{3}} &amp; 0 \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix}\\ R=\rm{diag}(|\bm{b}_1|,|\bm{b}_2|,|\bm{b}_3|)\cdot C= \begin{bmatrix} \sqrt{6} &amp; 0 &amp; 0 \\ 0 &amp; \sqrt{3} &amp; 0 \\ 0 &amp; 0 &amp; \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 &amp; 1 &amp; \cfrac{7}{6} \\[2ex] 0 &amp; 1 &amp; \cfrac{1}{3} \\[2ex] 0 &amp; 0 &amp; 1 \end{bmatrix}= \begin{bmatrix} \sqrt{6} &amp; \sqrt{6} &amp; \cfrac{7}{\sqrt{6}} \\[2ex] 0 &amp; \sqrt{3} &amp; \cfrac{1}{\sqrt{3}} \\[2ex] 0 &amp; 0 &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} \end{array} Q=(q1,q2,q3)=6 16 26 13 13 13 12 102 1R=diag(b1,b2,b3)C=6 0003 0002 10011067311=6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR

Givens变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 &amp; 2 &amp; 2 \\ 2 &amp; 1 &amp; 2 \\ 1 &amp; 2 &amp; 1 \end{array}\right] A(0)=A=121212221的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)=121构造旋转矩阵 T 1 T_1 T1,使 T 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 T_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 T1b(1)=b(1)e1

T 1 = T 13 T 12 = [ 5 6 0 1 6 0 1 0 − 1 6 0 5 6 ] [ 1 5 2 5 0 − 2 5 1 5 0 0 0 1 ] = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] T_1=T_{13}T_{12}=\begin{bmatrix} \cfrac{\sqrt{5}}{\sqrt{6}} &amp; 0 &amp; \cfrac{1}{\sqrt{6}} \\ 0 &amp; 1 &amp; 0 \\ -\cfrac{1}{\sqrt{6}} &amp; 0 &amp; \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{5}} &amp; \cfrac{2}{\sqrt{5}} &amp; 0 \\ -\cfrac{2}{\sqrt{5}} &amp; \cfrac{1}{\sqrt{5}} &amp; 0 \\ 0 &amp; 0 &amp; 1 \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} &amp; \cfrac{1}{\sqrt{5}} &amp; 0 \\ -\cfrac{1}{\sqrt{30}} &amp; -\cfrac{2}{\sqrt{30}} &amp; \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} T1=T13T12=6 5 06 10106 106 5 5 15 205 25 10001=6 15 230 16 25 130 26 106 5

T 1 b ( 1 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 1 ] = [ 6 0 0 ] T_{1}\bm{b}^{(1)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} &amp; \cfrac{1}{\sqrt{5}} &amp; 0 \\ -\cfrac{1}{\sqrt{30}} &amp; -\cfrac{2}{\sqrt{30}} &amp; \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=\begin{bmatrix} \sqrt{6} \\ 0 \\ 0 \end{bmatrix} T1b(1)=6 15 230 16 25 130 26 106 5 121=6 00

T 1 A ( 0 ) = [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 − 3 5 − 2 5 0 6 30 − 1 30 ] T_{1}A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} &amp; \cfrac{1}{\sqrt{5}} &amp; 0 \\ -\cfrac{1}{\sqrt{30}} &amp; -\cfrac{2}{\sqrt{30}} &amp; \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1&amp;2&amp;2 \\ 2&amp;1&amp;2 \\ 1&amp;2&amp;1 \end{bmatrix} =\left[\begin{array}{c:cc} \sqrt{6} &amp; \sqrt{6} &amp; \cfrac{7}{\sqrt{6}} \\\hdashline 0 &amp; -\cfrac{3}{\sqrt{5}} &amp; -\cfrac{2}{\sqrt{5}} \\ 0 &amp; \cfrac{6}{\sqrt{30}} &amp; -\cfrac{1}{\sqrt{30}} \end{array}\right] T1A(0)=6 15 230 16 25 130 26 106 5 121212221=6 006 5 330 66 75 230 1

  第2步,对 A ( 1 ) = [ − 3 5 − 2 5 6 30 − 1 30 ] A^{(1)}=\left[\begin{array}{c:c} -\cfrac{3}{\sqrt{5}} &amp; -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} &amp; -\cfrac{1}{\sqrt{30}} \end{array}\right] A(1)=5 330 65 230 1的第1列 b ( 2 ) = [ − 3 5 6 30 ] \bm{b}^{(2)}=\begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} b(2)=5 330 6构造旋转矩阵 T 2 T_2 T2,使 T 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 T_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 T2b(2)=b(2)e1

T 2 = T 12 = [ − 3 5 2 10 − 2 10 − 3 5 ] T_2=T_{12}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} &amp; \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} &amp; -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} T2=T12=5 3 10 210 25 3

T 2 b ( 2 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 6 30 ] = [ 3 0 ] T_2\bm{b}^{(2)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} &amp; \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} &amp; -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} \\ 0 \end{bmatrix} T2b(2)=5 3 10 210 25 3 5 330 6=[3 0]

T 2 A ( 1 ) = [ − 3 5 2 10 − 2 10 − 3 5 ] [ − 3 5 − 2 5 6 30 − 1 30 ] = [ 3 1 3 0 1 2 ] T_2A^{(1)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} &amp; \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} &amp; -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} &amp; -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} &amp; -\cfrac{1}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} T2A(1)=5 3 10 210 25 3 5 330 65 230 1=3 03 12 1

  最后,令
T = [ 1 O T O T 2 ] T 1 = [ 1 0 0 0 − 3 5 2 10 0 − 2 10 − 3 5 ] [ 1 6 2 6 1 6 − 2 5 1 5 0 − 1 30 − 2 30 5 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] T=\begin{bmatrix}1&amp;O^{\text T}\\[2ex]O&amp;T_2\end{bmatrix}T_1 =\begin{bmatrix} 1&amp;0&amp;0\\0&amp;-\cfrac{\sqrt{3}}{\sqrt{5}} &amp; \cfrac{2}{\sqrt{10}} \\ 0&amp;-\cfrac{2}{\sqrt{10}} &amp; -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} &amp; \cfrac{1}{\sqrt{5}} &amp; 0 \\ -\cfrac{1}{\sqrt{30}} &amp; -\cfrac{2}{\sqrt{30}} &amp; \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} &amp; 0 &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix} T=[1OOTT2]T1=10005 3 10 2010 25 3 6 15 230 16 25 130 26 106 5 =6 13 12 16 23 106 13 12 1

Q = T T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = T A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=T^{\text T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{3}} &amp; 0 \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=TA=\begin{bmatrix} \sqrt{6} &amp; \sqrt{6} &amp; \cfrac{7}{\sqrt{6}} \\ 0 &amp; {\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; 0 &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=TT==6 16 26 13 13 13 12 102 1,R=TA=6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR

Householder变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 &amp; 2 &amp; 2 \\ 2 &amp; 1 &amp; 2 \\ 1 &amp; 2 &amp; 1 \end{array}\right] A(0)=A=121212221的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} b(1)=121构造Householder矩阵 H 1 H_1 H1,使 H 1 b ( 1 ) = ∣ b ( 1 ) ∣ e 1 H_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1 H1b(1)=b(1)e1
b ( 1 ) − ∣ b ( 1 ) ∣ e 1 = [ 1 2 1 ] − 6 [ 1 0 0 ] = [ 1 − 6 2 1 ] \bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}-\sqrt{6}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} b(1)b(1)e1=1216 100=16 21

u = b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ b ( 1 ) − ∣ b ( 1 ) ∣ e 1 ∣ = 1 12 − 2 6 [ 1 − 6 2 1 ] \bm{u}=\cfrac{\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1}{|\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1|}= \cfrac{1}{\sqrt{12-2\sqrt{6}}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix} u=b(1)b(1)e1b(1)b(1)e1=1226 116 21

H 1 = I − 2 u u T = [ 1 0 0 0 1 0 0 0 1 ] − 1 6 − 6 [ 1 − 6 2 1 ] [ 1 − 6 2 1 ] = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] H_1=I-2\bm{uu}^{\rm T}=\begin{bmatrix} 1 &amp; 0 &amp; 0 \\ 0 &amp; 1 &amp; 0 \\ 0 &amp; 0 &amp; 1 \end{bmatrix}- \cfrac{1}{6-\sqrt{6}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}\begin{bmatrix} 1-\sqrt{6} &amp; 2 &amp; 1 \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} &amp; \cfrac{\sqrt{6}-2}{\sqrt{6}-6} &amp; \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}-6} &amp; \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} H1=I2uuT=10001000166 116 21[16 21]=6 16 26 16 26 66 26 626 16 626 66 5

H 1 A ( 0 ) = [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 3 − 6 6 − 1 2 6 0 6 6 − 1 1 6 ] H_1A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} &amp; \cfrac{\sqrt{6}-2}{\sqrt{6}-6} &amp; \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}-6} &amp; \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} \begin{bmatrix} 1 &amp; 2 &amp; 2 \\ 2 &amp; 1 &amp; 2 \\ 1 &amp; 2 &amp; 1 \end{bmatrix}= \left[\begin{array}{c:cc} {\sqrt{6}} &amp; {\sqrt{6}} &amp; \cfrac{7}{\sqrt{6}} \\\hdashline 0 &amp; \cfrac{3-\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{2}{\sqrt{6}} \\ 0 &amp; \cfrac{\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{1}{\sqrt{6}} \end{array}\right] H1A(0)=6 16 26 16 26 66 26 626 16 626 66 5121212221=6 006 6 136 6 16 6 76 26 1

  第2步,对 A ( 1 ) = [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] A^{(1)}=\left[\begin{array}{c:c} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{1}{\sqrt{6}} \end{array}\right] A(1)=6 136 6 16 6 26 1的第1列 b ( 2 ) = [ 3 − 6 6 − 1 6 6 − 1 ] \bm{b}^{(2)}=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)=6 136 6 16 构造Householder矩阵 H 2 H_2 H2,使 H 2 b ( 2 ) = ∣ b ( 2 ) ∣ e 1 H_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1 H2b(2)=b(2)e1
b ( 2 ) − ∣ b ( 2 ) ∣ e 1 = [ 3 − 6 6 − 1 6 6 − 1 ] − 21 − 6 6 6 − 1 [ 1 0 ] = [ 3 − 6 − 21 − 6 6 6 − 1 6 6 − 1 ] = [ x 6 − 1 6 6 − 1 ] \bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix}- \cfrac{\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =\begin{bmatrix} \cfrac{3-\sqrt{6}-\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} b(2)b(2)e1=6 136 6 16 6 12166 [10]=6 136 2166 6 16 =6 1x6 16

u = b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ b ( 2 ) − ∣ b ( 2 ) ∣ e 1 ∣ = 6 − 1 x 2 + 6 [ x 6 − 1 6 6 − 1 ] = [ x x 2 + 6 6 x 2 + 6 ] \bm{u}=\cfrac{\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1}{|\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1|}= \cfrac{\sqrt{6}-1}{\sqrt{x^2+6}} \begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} u=b(2)b(2)e1b(2)b(2)e1=x2+6 6 16 1x6 16 =x2+6 xx2+6 6

H 2 = I − 2 u u T = [ 1 0 0 1 ] − 2 [ x x 2 + 6 6 x 2 + 6 ] [ x x 2 + 6 6 x 2 + 6 ] = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] H_2=I-2\bm{uu}^{\text T}=\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \end{bmatrix}- 2\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} &amp; \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix}= \begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} &amp; \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} &amp; \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} H2=I2uuT=[1001]2x2+6 xx2+6 6 [x2+6 xx2+6 6 ]=x2+66x2x2+626 xx2+626 xx2+6x26

H 2 A ( 1 ) = [ 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 3 − 6 6 − 1 2 6 6 6 − 1 1 6 ] = [ 3 1 3 0 1 2 ] H_2A^{(1)}=\begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} &amp; \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} &amp; \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} &amp; \cfrac{1}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} H2A(1)=x2+66x2x2+626 xx2+626 xx2+6x266 136 6 16 6 26 1=3 03 12 1

  最后,令
S = [ 1 O T O H 2 ] H 1 = [ 1 0 0 0 6 − x 2 x 2 + 6 − 2 6 x x 2 + 6 0 − 2 6 x x 2 + 6 x 2 − 6 x 2 + 6 ] [ 1 6 2 6 1 6 2 6 6 − 2 6 − 6 2 6 − 6 1 6 2 6 − 6 6 − 5 6 − 6 ] = [ 1 6 2 6 1 6 1 3 − 1 3 1 3 1 2 0 − 1 2 ] S=\begin{bmatrix}1&amp;O^{\text T}\\[2ex]O&amp;H_2\end{bmatrix}H_1 =\begin{bmatrix} 1&amp;0&amp;0\\[2ex]0&amp;\cfrac{6-x^2}{{x^2+6}} &amp; \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] 0&amp;\cfrac{-2\sqrt{6}x}{{x^2+6}} &amp; \cfrac{x^2-6}{{x^2+6}}\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} &amp; \cfrac{\sqrt{6}-2}{\sqrt{6}-6} &amp; \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}-6} &amp; \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} &amp; 0 &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix} S=[1OOTH2]H1=1000x2+66x2x2+626 x0x2+626 xx2+6x266 16 26 16 26 66 26 626 16 626 66 5=6 13 12 16 23 106 13 12 1

Q = S T = = [ 1 6 1 3 1 2 2 6 − 1 3 0 1 6 1 3 − 1 2 ] , R = S A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=S^{\rm T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{3}} &amp; 0 \\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=SA=\begin{bmatrix} \sqrt{6} &amp; \sqrt{6} &amp; \cfrac{7}{\sqrt{6}} \\ 0 &amp; {\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; 0 &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} Q=ST==6 16 26 13 13 13 12 102 1,R=SA=6 006 3 06 73 12 1

则有 A = Q R A=QR A=QR。(感兴趣的读者可用MATLAB验证结果,没想到一个小小的矩阵计算这么复杂(╯﹏╰))

四、矩阵的满秩分解

  设 A ∈ C r m × n ( r &gt; 0 ) A\in C_r^{m\times n}(r&gt;0) ACrm×n(r>0),存在矩阵 F ∈ C r m × r F\in C_r^{m\times r} FCrm×r G ∈ C r r × n G\in C_r^{r\times n} GCrr×n,使得
(7) A = F G \color{#F00}A=FG\tag{7} A=FG(7)

其中 r r r为矩阵的秩, F F F是列满秩矩阵 G G G是行满秩矩阵,上式即为矩阵的满秩分解。当 A A A是满秩(列满秩或行满秩)矩阵时, A A A可分解为一个因子是单位矩阵,另一个因子是 A A A本身,称此满秩分解为平凡分解

五、矩阵的奇异值分解

  设 A ∈ C r m × n ( r &gt; 0 ) A\in C_r^{m\times n}(r&gt;0) ACrm×n(r>0),则存在 m m m阶酉矩阵 U U U n n n阶酉矩阵 V V V,使得
(8) A = U D V H = U [ Σ O O O ] V H \color{#F00}A=UDV^{\rm H}=U \begin{bmatrix} {\mathit\Sigma} &amp; O \\ O &amp; O \end{bmatrix} V^{\rm H}\tag{8} A=UDVH=U[ΣOOO]VH(8)

其中, V H V^{\rm H} VH代表酉矩阵 V V V共轭转置 Σ = d i a g ( σ 1 , σ 2 , ⋯ &ThinSpace; , σ r ) \color{#F0F}{\mathit\Sigma}={\rm{diag}}(\sigma_1,\sigma_2,\cdots,\sigma_r) Σ=diag(σ1,σ2,,σr) σ i ( i = 1 , 2 , ⋯ &ThinSpace; , r ) \sigma_i(i=1,2,\cdots,r) σi(i=1,2,,r)为矩阵 A A A的全部非零奇异值。上式即为矩阵的奇异值分解(Singular Value Decomposition,简称SVD分解),当 A A A为实对称矩阵时,也称正交对角分解

  矩阵的奇异值分解在最优化问题、特征值问题、最小二乘问题、广义逆矩阵问题及统计学等方面都有重要应用。下面通过一个具体实例,将矩阵 A = [ 1 0 0 1 1 1 ] A=\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \\ 1 &amp; 1 \end{bmatrix} A=101011进行SVD分解。

  • 首先计算 A T A = [ 1 0 1 0 1 1 ] [ 1 0 0 1 1 1 ] = [ 2 1 1 2 ] A^{\rm T}A=\begin{bmatrix}1&amp;0&amp;1\\0&amp;1&amp;1\end{bmatrix}\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \\ 1 &amp; 1 \end{bmatrix}=\begin{bmatrix} 2 &amp; 1 \\ 1 &amp; 2 \end{bmatrix} ATA=[100111]101011=[2112]

  • 对矩阵 A T A A^{\rm T}A ATA,由 ∣ λ I − A T A ∣ = ∣ λ − 2 − 1 − 1 λ − 2 ∣ = ( λ − 1 ) ( λ − 3 ) = 0 |\lambda I-A^{\rm T}A|=\begin{vmatrix} \lambda-2 &amp; -1 \\ -1 &amp; \lambda-2 \\ \end{vmatrix}=(\lambda-1)(\lambda-3)=0 λIATA=λ211λ2=(λ1)(λ3)=0,得特征值 λ 1 = 1 , &ThinSpace; λ 2 = 3 \lambda_1=1,\,\lambda_2=3 λ1=1,λ2=3,对应的特征向量分别为:

ξ 1 = k 1 [ 1 − 1 ] , ξ 1 = k 2 [ 1 1 ] \bm \xi_1=k_1\begin{bmatrix} 1 \\ -1 \\ \end{bmatrix},\quad\bm \xi_1=k_2\begin{bmatrix} 1 \\ 1 \\ \end{bmatrix} ξ1=k1[11],ξ1=k2[11]

  • 于是有

Σ = d i a g ( λ 1 , λ 2 ) = [ 1 0 0 3 ] D = [ Σ O O O ] = [ 1 0 0 3 0 0 ] V = [ ξ 1 ∥ ξ 1 ∥ ξ 2 ∥ ξ 2 ∥ ] = [ 1 2 1 2 − 1 2 1 2 ] , &ThickSpace; 这里 V 可以有四种解 \begin{array}{l} \mathit\Sigma={\rm diag}(\sqrt{\lambda_1},\sqrt{\lambda_2})= \begin{bmatrix} 1 &amp; 0 \\ 0 &amp; \sqrt{3} \end{bmatrix}\\ D=\begin{bmatrix} {\mathit\Sigma} &amp; O \\ O &amp; O \end{bmatrix}=\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; \sqrt{3} \\0 &amp; 0\end{bmatrix}\\ V= \begin{bmatrix} \cfrac{\bm \xi_1}{\|\bm \xi_1\|} &amp; \cfrac{\bm \xi_2}{\|\bm \xi_2\|} \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix},\;\text{这里$V$可以有四种解} \end{array} Σ=diag(λ1 ,λ2 )=[1003 ]D=[ΣOOO]=10003 0V=[ξ1ξ1ξ2ξ2]=2 12 12 12 1,这里V可以有四种解

  • 计算

U 1 = A V Σ − 1 = [ 1 0 0 1 1 1 ] [ 1 2 1 2 − 1 2 1 2 ] [ 1 0 0 1 3 ] = [ 1 2 1 6 − 1 2 1 6 0 2 6 ] U_1=AV{\mathit\Sigma}^{-1}=\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \\ 1 &amp; 1 \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 &amp; 0 \\ 0 &amp; \cfrac{1}{\sqrt{3}} \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} \\ 0 &amp; \cfrac{2}{\sqrt{6}} \end{bmatrix} U1=AVΣ1=1010112 12 12 12 11003 1=2 12 106 16 16 2

  • 构造一个列向量 U 2 = [ α 1 , α 2 , α 3 ] T U_2=[\alpha_1,\alpha_2,\alpha_3]^{\rm T} U2=[α1,α2,α3]T,使得 U = [ U 1 U 2 ] = [ 1 2 1 6 α 1 − 1 2 1 6 α 2 0 2 6 α 3 ] U=\left[\begin{array}{c|c}U_1&amp;U_2\end{array}\right]=\begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \alpha_1 \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \alpha_2 \\ 0 &amp; \cfrac{2}{\sqrt{6}} &amp; \alpha_3\end{bmatrix} U=[U1U2]=2 12 106 16 16 2α1α2α3为酉矩阵,即有:

[ 1 2 − 1 2 0 1 6 1 6 2 6 ] [ α 1 α 2 α 3 ] = 0 , 且 α 1 2 + α 2 2 + α 3 2 = 1 \begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; -\cfrac{1}{\sqrt{2}} &amp; 0\\ \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{6}} &amp; \cfrac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}={\bf 0},\quad且\sqrt{\alpha_1^2+\alpha_2^2+\alpha_3^2}=1 2 16 12 16 106 2α1α2α3=0,α12+α22+α32 =1

&ThickSpace; U 2 = ± [ 1 3 1 3 − 1 3 ] \;U_2=\pm\begin{bmatrix} \cfrac{1}{\sqrt{3}} &amp; \cfrac{1}{\sqrt{3}} &amp; -\cfrac{1}{\sqrt{3}} \end{bmatrix} U2=±[3 13 13 1]

U = [ 1 2 1 6 1 3 − 1 2 1 6 1 3 0 2 6 − 1 3 ] , &ThickSpace; 这里 U 可以有两种解 U=\begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; \cfrac{2}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{3}}\end{bmatrix},\;\text{这里$U$可以有两种解} U=2 12 106 16 16 23 13 13 1,这里U可以有两种解

  • 最后, A A A的SVD分解为:

A = U D V T = [ 1 2 1 6 1 3 − 1 2 1 6 1 3 0 2 6 − 1 3 ] [ 1 0 0 3 0 0 ] [ 1 2 1 2 − 1 2 1 2 ] T = [ 1 0 0 1 1 1 ] A=UDV^{\rm T}=\begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{3}} \\ 0 &amp; \cfrac{2}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{3}}\end{bmatrix}\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; \sqrt{3} \\0 &amp; 0\end{bmatrix}\begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \end{bmatrix}^{\rm T} =\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \\ 1 &amp; 1 \end{bmatrix} A=UDVT=2 12 106 16 16 23 13 13 110003 02 12 12 12 1T=101011

当调整奇异值的顺序,使 Σ = [ 3 0 0 1 ] \mathit\Sigma= \begin{bmatrix} \sqrt{3} &amp; 0 \\ 0 &amp; 1 \end{bmatrix} Σ=[3 001]时,可得
D = [ 3 0 0 1 0 0 ] V = [ 1 2 1 2 1 2 − 1 2 ] , &ThickSpace; 这里 V 可以有四种解 U = [ 1 6 1 2 1 3 1 6 − 1 2 1 3 2 6 0 − 1 3 ] , &ThickSpace; 这里 U 可以有两种解 \begin{array}{l} D=\begin{bmatrix} \sqrt{3} &amp; 0 \\ 0 &amp; 1 \\0 &amp; 0\end{bmatrix}\\ V=\begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \\ \cfrac{1}{\sqrt{2}} &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix},\;\text{这里$V$可以有四种解}\\ U=\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{2}{\sqrt{6}} &amp; 0 &amp; -\cfrac{1}{\sqrt{3}}\end{bmatrix},\;\text{这里$U$可以有两种解} \end{array} D=3 00010V=2 12 12 12 1,这里V可以有四种解U=6 16 16 22 12 103 13 13 1,这里U可以有两种解

A = U D V T = [ 1 6 1 2 1 3 1 6 − 1 2 1 3 2 6 0 − 1 3 ] [ 3 0 0 1 0 0 ] [ 1 2 1 2 1 2 − 1 2 ] T = [ 1 0 0 1 1 1 ] A=UDV^{\rm T}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} &amp; \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{6}} &amp; -\cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{3}} \\ \cfrac{2}{\sqrt{6}} &amp; 0 &amp; -\cfrac{1}{\sqrt{3}}\end{bmatrix} \begin{bmatrix} \sqrt{3} &amp; 0 \\ 0 &amp; 1 \\0 &amp; 0\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{2}} &amp; \cfrac{1}{\sqrt{2}} \\ \cfrac{1}{\sqrt{2}} &amp; -\cfrac{1}{\sqrt{2}} \end{bmatrix}^{\rm T} =\begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \\ 1 &amp; 1 \end{bmatrix} A=UDVT=6 16 16 22 12 103 13 13 13 000102 12 12 12 1T=101011

可以看到,矩阵的奇异值分解通常不是唯一的。

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值