1.设计一个算法,把一个含有N个元素的数组循环右移K位,要求时间复杂度为O(N),
且只允许使用两个附加变量。
方法一:
每次将数组中的元素右移一位,循环K次,则实现了右移K位。
例如,
原始字符串:abcd1234
右移一位:4abcd123
右移一位:34abcd12
右移一位:234abcd1
右移一位:1234abcd
循环4次,则实现了右移4次
实现函数如下:
void right_shift(char *str, int N, int K)
{
char temp;
K %= N; //目的是,当K > N时,移动K次与移动K-i*N次是一样的。
while(K--)
{
t = str[N -1];
for(int i = N - 1; i > 0; i--)
str[i] = str[i - 1];
str[0] = t;
}
}
从上面的实现代码可以看出,
由于K %= N, 所以while循环的K值是小于N的。所以时间复杂度最大为O(N^2), 空间复杂度为O(1),不符合题目要求。
方法二:
对于原始字符串abcd1234,右移2位后为:34abcd12。
通过比较可以看出,有两段子字符串的顺序是不变的。abcd12和34。
则可发现,右移K位的过程就是把数组的两部分交换的过程。
例如:abcd12|34.
对abcd12逆序排列:21dcba
对34逆序排列: 43
对全部的21dcba|43进行逆序排列:34abcd21.
得出如下结论:
将字符串S="abcd1234"分为两部分X="abcd12"和Y="34"。那么S=(X, Y)
X逆序记为X'="21dcba"
Y逆序记为Y'="43"
则(X', Y')="21dcba43"整体再逆序为"34abcd12" = (Y, X)
即(X', Y')' = (Y, X)
代码实现如下:
void reverse(char* str, int begin, int end)
{
char temp;
for( ; begin < end; begin++)
{
temp = str[end];
str[end] = str[begin];
str[begin] = temp;
}
}
void right_shift(char *str, int N, int K)
{
K %= N;
reverse(str, 0, N - K -1);
reverse(str, N - K, N - 1);
reverse(str, 0, N - 1);
}
该算法则实现了在线性时间内实现右移操作了。
编写主函数测试如下:
#include <stdio.h>
#include <stdlib.h>
int main()
{
char str[] = "abcd1234";
printf("The initial string:%s\n", str);
right_shift(str, 8, 2);
printf("The string after right shift:%s\n", str);
system("pause");
return 0
}
2.实现对字符串进行左旋转的函数,要求对长度为n的字符串操作的时间复杂度为O(n), 空间复杂度为O(1).
例如,原始字符串:abcd1234,左旋转2位后为:cd1234ab
通过上面的1的分析,只是把右移改为左移。其他方法相同。
代码实现如下:
void reverse(char* str, int begin, int end)
{
char temp;
for( ; begin < end; begin++)
{
temp = str[end];
str[end] = str[begin];
str[begin] = temp;
}
}
void right_shift(char *str, int N, int K)
{
K %= N;
reverse(str, 0, K -1);
reverse(str, K, N - 1);
reverse(str, 0, N - 1);
}
int main()
{
char str[] = "abcd1234";
printf("The initial string:%s\n", str);
right_shift(str, 8, 2);
printf("The string after right shift:%s\n", str);
system("pause");
return 0
}