OpenGL 学习笔记(十一)

一、二维变化为例

        首先是平移。平移,是指将点P沿直线路径从一个坐标位置移到另一个坐标位置,这是一个重定位过程。它不会产生变形。所以它是一种刚体变换

        那么这里的X和XY就称为比例系数。

                可是旋转,就比较复杂了。它是把P点绕坐标原点转动θ角度后,得到新的P'的一个重定位过程。

                那么对于这个角度,在图形学中,将逆时针作为正方向,而顺时针作为负方向。

         对称变换后的图形是原图形关于某一个轴线或原点的镜像。

         错切,也称为剪切错位变换,用于产生弹性物体的变形处理。

         以上就是五种基本的几何变换。我们可以看出,每一种计算的形式都是不同的。这样一来,一个是计算形式不统一,另一个如果存在多次变换进行复核的时候,计算就更加复杂了。那么有没有一个方法可以把这些形式统一起来?这里就引入了齐次坐标。

        齐次坐标技术,是从几何学发展起来的。因为有时在N维空间中较难解决的问题,变换到N加一维空间中比较容易得到问题的解答。

        所谓齐次坐标表示,就是用N加一维向量表示一个N维向量。例如,在二维平面中,点PXY的齐次坐标表示,就是p[hx,hy,h]。这里的H,是任意一个不为零的比例系数。

 类似的三维空间中,坐标点的齐次坐标表示,就为[hx,hy,hz,h]。

 N维空间中用非齐次坐标表示一个点的向量,具有N个坐标分量

 

以二维坐标系下的点P(4,3)为例。

        那么保证其唯一性的方法,是定义规范化的齐次坐标表示。

         规范化的齐次坐标表示,就是H等于一的齐次坐标表示。

        在定义了规范化的齐次坐标表示之后,图形变换就可以表示为图形点集的规范化齐次坐标矩阵与一个变换矩阵进行矩阵相乘的形式。

        那么引入了规范化的齐次坐标表示以后,二维空间中某点的变换就可以表示成点的齐次坐标与三阶的二维变换矩阵T2D相乘。就是这样的形式.....其中T2D就是二维齐次坐标变换矩阵,简称二维变换矩阵,它是一个三乘以三的矩阵。

从功能上,我们可以把这个矩阵分为四个子矩阵:

        其中左上角的T1是对图形进行比例旋转,对称错切这些变换的。

T2是对图形进行平移变换的。 

T3是对图形做投影变换的

T4则可以对图形做整体的比例变换。
 

         刚才对于变换的计算,可以得到平移、比例旋转对称、错切相应的变换矩阵

 

        进行的公式推导,那如果有多个点,或者我们需要变换多次,只有一行,实际上有几点就可以对应几行。第二,如果是多次变换,这里的T就可以变成多次变换对应矩阵的乘积。到这里我们发现,通过引入齐次坐标技术,我们完全可以把图形的变换转换为表示图形的点集矩阵与变换矩阵进行矩阵相乘的问题。

        这种方法统一了计算形式,利于复合变换。而且这种矩阵运算的方式还可以借助计算机的高速计算功能,很快的得到变换后的图形,从而为高动态的计算机图形显示提供可能性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大王算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值