利用numpy生成各种波

一,生成矩形波

矩形波的傅里叶级数

x=np.linspace(-np.pi,np.pi,201)
k=np.arange(1,99)
k=2*k-1
y=np.zeros_like(x)
for i in range(len(x)):
    y[i]=(4/np.pi)*np.sum(np.sin(k*x[i])/k)
# print(t)
# print(f)
plt.plot(x,y)
plt.show()

二,生成锯齿波和三角波

锯齿波的傅里叶级数

x = np.linspace(-np.pi, np.pi, 201)
k = np.arange(1, 99)
y = np.zeros_like(x)
for i in range(len(x)):
    y[i] = -(2 / np.pi) * np.sum(np.sin(2*np.pi * x[i]*k) / k)
# print(t)
# print(f)
plt.plot(x, y)
# plt.show()

plt.plot(x, abs(y))
plt.show()

### 使用 Numpy 实现延迟滤 延迟滤是一种处理信号的方式,在该方式下,通过引入一定的延时来调整信号特性。对于离散时间序列来说,可以利用 `numpy` 的卷积函数 `convolve` 来模拟这种行为。 假设有一个输入信号 \(x[n]\),想要创建一个具有固定样本数量 \(\tau\) 延迟的新信号 \(y[n]=x[n-\tau]\): ```python import numpy as np def delay_filter(signal, tau): """ 对给定的一维数组施加τ个采样的延迟 参数: signal (array-like): 输入信号. tau (int): 需要施加的延迟样本数. 返回: array: 应用了指定延迟后的输出信号. """ padded_signal = np.pad(signal, pad_width=tau, mode='constant', constant_values=(0)) delayed_signal = padded_signal[:len(signal)] return delayed_signal ``` 上述代码定义了一个简单的延迟过滤器函数[^1]。此函数接受任意长度的一维 NumPy 数组作为输入,并返回一个新的相同大小的数组,其中原始数据被向右移动了 τ 位置,左侧填充零值以保持尺寸不变。 为了更好地理解这个过程的工作原理以及它如何应用于实际场景中,请考虑下面的例子: ```python # 创建测试信号 time_points = np.linspace(0, 10, num=100) original_signal = np.sin(time_points) # 设置延迟参数并调用delay_filter() tau_value = 10 filtered_signal = delay_filter(original_signal, tau_value) # 可视化结果对比 import matplotlib.pyplot as plt plt.figure(figsize=(8,6)) plt.plot(time_points, original_signal, label="Original Signal", color='blue') plt.plot(time_points, filtered_signal, '--r', linewidth=2., label=f'Delayed by {tau_value} samples') plt.legend(loc='best') plt.show() ``` 这段脚本首先生成了一条正弦曲线作为基础信号,接着对其应用了自定义的延迟滤器,最后绘制出了两者之间的差异图示。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值