目录
近年来,机理与数据的融合计算正快速发展着。机器学习作为数据驱动的计算方法,以其解决高维复杂问题的能力而闻名于世。它在视觉理解、自然语言处理等领域取得了重大突破。与此同时,基于机理的计算方法,如有限元模拟,在现代工业中起着至关重要的作用,广泛应用于飞机、汽车、材料和新能源等行业。
有限元方法简介与挑战
有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域上定义基函数,把有限元组合起来近似得到原方程的解。然而,被广泛应用的有限元方法也面临挑战:随着问题规模的增长,计算复杂度和内存需求也随之增加,导致计算时间过长和资源消耗过大(“维度灾难”问题)。
逆问题是在数学和科学中,通过给定输出数据,寻找导致这些结果的输入或参数。求解逆问题的价值在于提供无法直接观测的信息和改善决策预测。有限元在许多逆问题中是常用的求解方法,然而逆问题中,用有限元法求解会有很多难点:
- 非唯一性:可能存在多个不同的输入或参数组合对应相同的观测结果,无法得到唯一解决方案。
- 不适定问题:输入数据中的误差会放大&#