假设有从 1 到 N 的 N 个整数,如果从这 N 个数字中成功构造出一个数组,使得数组的第 i 位 (1 <= i <= N) 满足如下两个条件中的一个,我们就称这个数组为一个优美的排列。条件:
I. 第 i 位的数字能被 i 整除
II. i 能被第 i 位上的数字整除
现在输入一个整数 N,请问可以构造多少个优美的排列?
方法回溯:
#include<bits/stdc++.h>
using namespace std;
int n,ans;
string s;
int vis[20];
void dfs(int cnt){
//因为一开始 所以当记录(n+1) 的时候 记录次数
if(cnt==n+1){
ans++;
return ;
}
for(int i=1;i<=n;i++){
if(vis[i]==1) continue;//如果i已经被使用了则跳到下一个
if(i%cnt!=0 && cnt%i!=0) continue;//两个条件 1 第 i 位的数字能被 i 整除 2. i 能被第 i 位上的数字整除
vis[i]=1;//因为要使用i 所以记录i被使用了
dfs(cnt+1);
vis[i]=0;//这一定要把i的下标清零
}
}
int main(){
while(cin>>n){
memset(vis,0,sizeof(vis));
ans=0;
dfs(1);//这里从第一个位开始记录;不能从0开始不然就卡住了
cout<<ans<<endl;
}
return 0;
}