数模学习第一天记录
前言
由于刚开始在b站上找MATLAB学习视频花费了太多时间,私认为不应该听太多教科书式理论的东西,而应该注重于实践。我推荐大家b站学习MATLAB的学习视频是由台大郭彦甫教授讲授的。
层次分析法(AHP)
层析分析法主要涉及到日常生活、工作的决策性问题 ,用于量化比较判断因素。
最经典的问题是选择旅游地问题。
层次分析法的层次就是目标层、准则层与方案层
通过准则层间元素相互对比满意度。设置满意度为1~9,满意度依次递增。下图中第一行第二列意思即为费用对比起景色,游客觉得景色更加重要。
但此时会出现不一致的情况,如下图所示
于是我们引入一致性检验,确定不一致的范围。
这里涉及到线性代数的知识
我们建立用对应于最大特征根的特征向量作为权向量w
定义一致性指标为下面这个公式,n为n阶,CI越大,不一致越严重
但CI这个指标我们如何去对比呢?此时引入随机一致性指标RI,对于随机得到的矩阵算出其CI。
并且定义一致性比率CR=CI/RI;当CR<0.1时,通过一致性检验
我们以上文中矩阵A为例求解出其最大特征根和特征向量。
以MATLAB求解公式如下文所示:
[x,y]=eig(A);%求矩阵的特征值和特征向量,x为特征向量矩阵,y为特征值矩阵。
eigenvalue=diag(y);%求对角线向量
lamda=max(eigenvalue);%求最大特征值
for i=1:length(A)%求最大特征值对应的序数
if lamda==eigenvalue(i)
break;
end
end
可算出最大特征根=5.073
特征向量w =(0.263,0.475,0.055,0.090,0.110)T
CI=0.018
CR=0.016<0.1则通过一致性检验
因为我们第三层方案有三个元素分别是桂林、黄山、北戴河。其对第二层的五个元素分别得到权向量,如在景色差不多的情况下,游客更想去哪里。则需求出成对比较阵,及他们的最大特征根、权向量
计算过程及方式与上文相似。
我们可以得出一个35的矩阵与第二层对第一层权向量所组成的51的矩阵相乘。我们最终可以得出一个组合权向量所构成的3*1的矩阵。
即可判断第三层对第一层的关系。若题目中有更多层,思路也类似。
但是层次分析法注重于你所选择的决策层,要符合实际规律不能主观臆断。且层次分析法人为因素起到很大的作用,所以其创新性与适用性不是很强。
差分方程简单介绍
差分方程广泛应用于建立离散模型过程中,而且在连续模型化为离散模型的数值计算中起到非常重要的作用。
可由斐波那契数列引出例子
设第一月有雌雄各一的一对小兔。假定两月后长成成兔,同时(即第三月)开始每月初产雌雄各一的一对小兔,新增的小兔也按此规律繁殖。设第n月末共有h(n)对兔子,试建立关于h(n)的方程。
我们把含有未知数的差分或表示成未知函数若干不同时期值的符号称为差分方程。
方程中未知函数下标的最大值和最小值的差数称为差分方程的阶。
若一个函数代入差分方程后,方程两端恒等,则称此函数为差分方程的解。如果解中所含相互独立的任意常数的个数等于方程的阶数,则称该解为差分方程的通解。满足初始条件的解称为特解。