CT重建
CT图像重建的历史
Radon变换与逆变换的提出奠定CT图像重建的数学基础(1917)
卷积反投影算法/滤波反投影算法的提出开启了图像精确重建的大门(1971-1974)
Feldkamp等人提出的FDK算法开启了图像三维重建的新纪元(1980)
Katsevich解决了锥形束螺旋CT图像精确重建的轴向截断问题(2002)
Pan等人提出了反投影滤波算法,解决了数据横向截断问题(2004)
Zhang等人提出了基于人工智能技术/深度学习技术的智能重建方法,革新了CT重建算法(2019)
Radon变换
Radon 变换揭示了函数和投影之间的关系,若函数为f (x, y),则不同角度下的投影为:
L : x c o s θ + y s i n θ − t = 0 L:xcos\theta+ysin\theta-t=0 L:xcosθ+ysinθ−t=0
p ( t , θ ) = ∫ L f ( x , y ) d l = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) δ ( x c o s θ + y s i n θ − t ) d x d y p(t,\theta)=\int_{L}f(x,y)dl=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\delta(xcos\theta+ysin\theta-t)dxdy p(t,θ)=∫Lf(x,y)dl=∫−∞∞∫−∞∞f(x,y)δ(xcosθ+ysinθ−t)dxdy
一个无限薄的切片内相对线性衰减系数的分布是由它的所有线积分的集合唯一决定
投影
物质对X射线的吸收可以用朗伯比尔定律来描述:
假设射出的X射线强度为 N 0 N_0 N0,射入的X射线强度为 N i N_i Ni
N 0 = N i e − μ d N_0=N_ie^{-\mu d} N0=Nie−μd
下面为叠加形式:
弦图
弦图是描述投影的方法,弦空间的纵轴表示探测器单元,横轴表示投影角度,一个单位投影就表示为平行于横轴直线上的一个样本集。
这样,在不同扫描角度上所采集到的所有数据就组成了一幅二维图像。
将投影 p ( s , θ ) p(s,\theta)