CT重建概念和算法详细解析

CT图像重建的历史

Radon变换与逆变换的提出奠定CT图像重建的数学基础(1917)
卷积反投影算法/滤波反投影算法的提出开启了图像精确重建的大门(1971-1974)
Feldkamp等人提出的FDK算法开启了图像三维重建的新纪元(1980)
Katsevich解决了锥形束螺旋CT图像精确重建的轴向截断问题(2002)
Pan等人提出了反投影滤波算法,解决了数据横向截断问题(2004)
Zhang等人提出了基于人工智能技术/深度学习技术的智能重建方法,革新了CT重建算法(2019)

Radon变换

Radon 变换揭示了函数和投影之间的关系,若函数为f (x, y),则不同角度下的投影为:
L : x c o s θ + y s i n θ − t = 0 L:xcos\theta+ysin\theta-t=0 L:xcosθ+ysinθt=0
p ( t , θ ) = ∫ L f ( x , y ) d l = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) δ ( x c o s θ + y s i n θ − t ) d x d y p(t,\theta)=\int_{L}f(x,y)dl=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x,y)\delta(xcos\theta+ysin\theta-t)dxdy p(t,θ)=Lf(x,y)dl=f(x,y)δ(xcosθ+ysinθt)dxdy
在这里插入图片描述
一个无限薄的切片内相对线性衰减系数的分布是由它的所有线积分的集合唯一决定

投影

在这里插入图片描述
物质对X射线的吸收可以用朗伯比尔定律来描述:
假设射出的X射线强度为 N 0 N_0 N0,射入的X射线强度为 N i N_i Ni
N 0 = N i e − μ d N_0=N_ie^{-\mu d} N0=Nieμd
下面为叠加形式:
在这里插入图片描述

弦图

弦图是描述投影的方法,弦空间的纵轴表示探测器单元,横轴表示投影角度,一个单位投影就表示为平行于横轴直线上的一个样本集。
这样,在不同扫描角度上所采集到的所有数据就组成了一幅二维图像。
在这里插入图片描述
将投影 p ( s , θ ) p(s,\theta)

CT(Computerized Tomography)是一种医学影像技术,通过对人体或物体进行扫描得到大量切面图像,这些切面图像可以用来对病变、损伤或结构等进行分析诊断。 在CT图像重建中,MATLAB可以使用不同的算法来还原出高质量的图像。其中最常用的算法是滤波后投影反向映射(Filtered Back Projection,FBP)算法。FBP算法的实现步骤如下: 1. 首先,通过使用X射线扫描设备,获得多个角度的投影数据。这些投影数据是通过X射线在人体或物体上的透射得到的。 2. 接下来,对每个角度的投影数据进行滤波处理。滤波的目的是去除噪声伪影,同时增强图像的对比度。 3. 然后,对滤波后的投影数据进行反向映射操作。反向映射的过程是将所有投影数据按照对应的角度位置进行叠加,以还原出原始的物体结构。 4. 最后,将得到的反向映射图像重建为二维或三维的CT影像,以供医生或研究人员分析诊断。 当然,除了FBP算法之外,还有其他一些用于CT图像重建算法,如迭代重建算法(例如神经网络反投影算法统计重建算法(例如最小二乘法)等。每种算法都有其优缺点,适用于不同的情况要求。 总之,MATLAB提供了各种算法工具箱来实现CT图像重建,而FBP算法是其中最常使用的一种算法,可以通过对投影数据进行滤波反向映射操作,来还原出高质量的CT影像。同时,根据具体的需求研究目的,还可以选择其他算法来进行CT图像重建
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

看星河的兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值