04-ComfyUI实现图像生成加速TensoRT

NVIDIA TensorRT 是一个高性能的深度学习推理 SDK,专为在 NVIDIA GPU 上加速深度学习模型的推理过程而设计。它支持多种主流深度学习框架,如 TensorFlow、PyTorch 等,并通过一系列优化技术提高模型的推理速度和效率。

主要功能和优势

  1. 性能优化:TensorRT 通过层和张量融合、内核自动调整、多流并行等技术,显著提高推理性能。

  2. 降低延迟:优化后的模型可以显著降低推理延迟,这对实时应用(如视频分析和自动驾驶)非常重要。

  3. 减少内存占用:通过优化神经网络的内存使用,降低对 GPU 资源的要求。

  4. 支持多种精度:TensorRT 支持 FP32、TF32、FP16 和 INT8 精度,可以根据应用场景灵活调整计算精度,权衡计算速度与模型精度。

  5. 跨平台支持:支持从多种框架导出模型,并通过 ONNX 标准使其与 TensorRT 兼容

1、下载安装包【迅雷网盘-下载速度快】请转存文件,后续会持续更新教程资源

迅雷云盘

2、网盘下载ComfyUI_TensorRT.zip插件包

3、将ComfyUI_TensorRT.zip解压到comfyui安装目录下的custom_nodes目录下,如图:

4、启动comfyui【下载依赖包需要一点时间请耐心等待】

5、训练加速模型【创建静态转换模型】

6、训练加速模型【创建模型加载器】

7、训练TensoRT加速模型:按【ctrl+enter】运行模型或者点击【执行

8、找到训练好的加速模型:

9、使用上一章节中创建的文生图工作流:【网盘下载工作流】

10、导入工作流:

11、替换模型为训练好的加速模型:【创建加速模型加载器】

12、替换模型,将加速模型与k采样器连接起来

13、选择训练好的大模型和对应的加速模型:【注意这里需要重启comfyui不然训练好的模型会找不到】

14、运行加速模型按【ctrl+enter】总耗时只有原来的一半

15、请去网盘下载我修改的工作流,用于参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老李家的骄傲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值