ComfyUI_TensorRT 安装和配置指南
项目地址:https://gitcode.com/gh_mirrors/co/ComfyUI_TensorRT
1. 项目基础介绍和主要编程语言
项目介绍
ComfyUI_TensorRT 是一个用于在 NVIDIA RTX™ 显卡上优化 Stable Diffusion 性能的开源项目。它通过利用 NVIDIA TensorRT 技术,显著提升图像生成速度和效率。该项目支持多种 Stable Diffusion 版本,包括 SDXL、SDXL Turbo、Stable Video Diffusion 等。
主要编程语言
该项目主要使用 Python 语言进行开发。
2. 项目使用的关键技术和框架
关键技术
- NVIDIA TensorRT: 用于优化 AI 模型在 NVIDIA RTX GPU 上的性能。
- Stable Diffusion: 支持多种版本的 Stable Diffusion 模型,包括 SDXL、SDXL Turbo 等。
框架
- ComfyUI: 一个用户友好的界面,用于管理和运行 Stable Diffusion 模型。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
-
硬件要求:
- 需要 NVIDIA RTX™ 显卡。
- 对于 SDXL 和 SDXL Turbo,推荐使用至少 12 GB VRAM 的 GPU。
- 对于 Stable Video Diffusion (SVD),推荐使用至少 16 GB VRAM 的 GPU。
- 对于 Stable Video Diffusion-XT (SVD-XT),推荐使用至少 24 GB VRAM 的 GPU。
-
软件要求:
- 安装 Python 3.x。
- 安装 Git。
详细安装步骤
步骤 1: 克隆项目仓库
首先,打开终端并克隆 ComfyUI_TensorRT 仓库到本地:
git clone https://github.com/comfyanonymous/ComfyUI_TensorRT.git
步骤 2: 进入项目目录
进入克隆的项目目录:
cd ComfyUI_TensorRT
步骤 3: 安装依赖
使用 pip 安装项目所需的依赖:
pip install -r requirements.txt
步骤 4: 配置 ComfyUI
将克隆的项目文件夹移动到 ComfyUI 的 custom_nodes
目录下。假设你的 ComfyUI 安装在 ~/ComfyUI
目录下:
mv ComfyUI_TensorRT ~/ComfyUI/custom_nodes/
步骤 5: 启动 ComfyUI
启动 ComfyUI 并加载 TensorRT 节点:
cd ~/ComfyUI
python main.py
步骤 6: 构建 TensorRT 引擎
在 ComfyUI 界面中,按照以下步骤构建 TensorRT 引擎:
- 添加一个
Load Checkpoint
节点。 - 添加一个
Static Model TensorRT Conversion
或Dynamic Model TensorRT Conversion
节点。 - 将
Load Checkpoint
节点的输出连接到TensorRT Conversion
节点的输入。 - 提供一个有意义的文件名前缀,并点击
Queue Prompt
开始构建 TensorRT 引擎。
步骤 7: 使用 TensorRT 引擎
使用 TensorRT Loader
节点加载构建好的 TensorRT 引擎,并连接到相应的采样器节点进行图像生成。
注意事项
- 首次生成 TensorRT 引擎可能需要较长时间,后续生成会更快。
- TensorRT 引擎目前不兼容 ControlNets 或 LoRAs,未来版本将支持这些功能。
通过以上步骤,你就可以成功安装和配置 ComfyUI_TensorRT,并在 NVIDIA RTX 显卡上享受更高效的 Stable Diffusion 图像生成体验。
ComfyUI_TensorRT 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI_TensorRT