第一类斯特林数

将1到n划分成k个圆排列的方案数
用类DP的方式去想,假设已经求出了1到n-1的方案数,那么第n个数可以放在哪:
1:新生成一个圆排列,该圆排列仅有一个数n,方案数就是用1到n-1的排列出k-1个园时的方案数。
2:不新生成圆排列,而是插入在原有的圆排列中。有很多的放置法:放在第一个圆排列第一个数后面,放在第一个圆排列第二个数后面,放在第二个圆排列第三个数后面etc,假设原本有M种排列方式,有N-1个数,那么新生成的方案数就是(N-1)*M,即(N-1)乘上(N-1)个点划分成K个圆的方案数

结论:假设A是N-1个点划分成K-1个圆的方案数,B是N-1个点划分成K个圆的方案数
那么:将1到n划分成k个圆排列的方案数=A+(n-1)B
为方便表达,将1到n划分成k个圆排列的方案数表达为[n,k]
第一类斯特林数的性质:
[0,0]=1
[n,0]=0
[n,n]=1
[n,1]=(n-1)! (阶乘)
[n,n-1]=C(n,2) (必定出现有一个圆是2个数,其他圆是一个数的情况,所以就转化成了C(n,2))
[n,2]=(i从1累加到n-1)1/2
(n-1)!X(1/i+1/(n-i))

假设第一个圆有i个数,那么第二个圆有n-i个数,第一个圆形的方案数是(i-1)!
第二个圆是(n-i-1)!,这是排列方案,还有分配方案。
同时,我们需要从n个数里挑i个数放在第一个圆里
此外,圆的顺序是不需要考虑的,所以要除2
所以是1/2*C(i,n)*(i-1)!*(n-i-1)!
经过整理,得1/2* n! / i(n-i)
再整理,得:1/2 *(n-1)!*(1/i+1/(n-i))
所以,为(i从1累加到n-1)1/2*(n-1)!*(1/i+1/(n-i))

[n,n-2]=2C(n,3)+3C(n,4)

有两种情况:
1:(n-1)个长度为1的圆,1个数量为3的圆
2:(n-2)个长度为1的圆,2个长度为2的圆

(k从0递加到n)[n,k]=n!

斯特林数的两种性质:
升阶函数x^(n↑)=x(x+1)(x+2)……(x+n-1)
=(k从0到n累加)[n,k]*x^k 就是斯特林数的生成函数

第一类斯特林数代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1010, MOD = 1e9 + 7;
int n, m;
int f[N][N];


int main() {
	cin >> n >> m;
	f[0][0] = 1;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			f[i][j] = (f[i - 1][j - 1] + (LL)(i - 1) * f[i - 1][j]) % MOD;
		}
	}
	cout << f[n][m] << endl;
	return 0;
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值