Python爬取新闻网站保存标题、内容、日期、图片等数据

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入


基本开发环境

  • Python 3.6
  • Pycharm
import requests
import parsel
import pdfkit
import csv
import threading

相关模块pip安装即可

确定目标网页

在这里插入图片描述

获取数据

  • 标题
  • 内容 保存成PDF
  • 日期
  • 图片 保存本地
  • 详情页url、日期、图片地址等等 保存csv

在这里插入图片描述
网站是静态网页,没有什么难度
在这里插入图片描述

详情页

同样是静态页面
在这里插入图片描述
在这里插入图片描述
网页源代码已经说明数据在什么地方了,利用相关的解析工具,对网页数据进行解析即可。

代码实现

  • 请求网页以及解析
def get_html(html_url):
    response = requests.get(url=html_url, headers=headers)
    return response


def get_pars(html_data):
    selector = parsel.Selector(html_data)
    return selector
  • 保存内容 PDF格式
html_str = """
<!doctype html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
</head>
<body>
{article}
</body>
</html>
"""
def save_article(article, title):
    html_path = '重庆新闻\\' + title + '.html'
    pdf_path = '重庆新闻pdf\\' + title + '.pdf'
    html = html_str.format(article=article)
    with open(html_path, mode='w', encoding='utf-8') as f:
        f.write(html)
        print('{}已下载完成'.format(title))
    # exe 文件存放的路径
    config = pdfkit.configuration(wkhtmltopdf='C:\\Program Files\\wkhtmltopdf\\bin\\wkhtmltopdf.exe')
    # 把 html 通过 pdfkit 变成 pdf 文件
    pdfkit.from_file(html_path, pdf_path, configuration=config)
  • 保存csv文件
f = open('新闻.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题', '作者', '日期', '新闻详情页'])
csv_writer.writeheader()
  • 保存图片
def save_img(img_urls):
    for i in img_urls:
        img_url = 'http://news.cqu.edu.cn' + i
        img_content = get_html(img_url).content
        img_name = img_url.split('/')[-1]
        with open('新闻图片\\' + img_name, mode='wb') as f:
            f.write(img_content)
  • 主函数
def main(url):
    html_data = get_html(url).text
    selector = get_pars(html_data)
    lis = selector.css('body > div:nth-child(4) > div > div.lists .title a::attr(href)').getall()
    for li in lis:
        content_data = get_html(li).text
        li_selector = get_pars(content_data)
        title = li_selector.css('.dtitle::text').get()  # 新闻标题
        article = li_selector.css('.acontent').get()  # 新闻内容
        name_list = li_selector.css('.dinfoa a::text').getall()  # 作者
        name = '|'.join(name_list)
        date_list = li_selector.css('.ibox span::text').getall()
        date_str = ''.join(date_list)  # 新闻日期
        img_urls = li_selector.css('.acontent p img::attr(src)').getall()   # 获取新闻内图片
        dit = {
            '标题': title,
            '作者': name,
            '日期': date_str,
            '新闻详情页': li,
        }
        csv_writer.writerow(dit)
        save_article(article, title)
        save_img(img_urls)


if __name__ == '__main__':
    for page in range(1, 11):
        url = 'https://news.cqu.edu.cn/newsv2/news-127.html?&page={}'.format(page)
        main_thread = threading.Thread(target=main, args=(url,))
        main_thread.start()

在这里插入图片描述

  • 文件PDF

在这里插入图片描述

在这里插入图片描述

  • 详情页url
    在这里插入图片描述
  • 相关图片

图片可以按照标题后缀数字123命名,这个地方可以优化
在这里插入图片描述

  • csv文件数据

在这里插入图片描述

完整代码

import requests
import parsel
import pdfkit
import csv
import threading


f = open('新闻.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题', '作者', '日期', '新闻详情页'])
csv_writer.writeheader()

headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}

html_str = """
<!doctype html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Document</title>
</head>
<body>
{article}
</body>
</html>
"""


def get_html(html_url):
    response = requests.get(url=html_url, headers=headers)
    return response


def get_pars(html_data):
    selector = parsel.Selector(html_data)
    return selector


def save_article(article, title):
    html_path = '重庆新闻\\' + title + '.html'
    pdf_path = '重庆新闻pdf\\' + title + '.pdf'
    html = html_str.format(article=article)
    with open(html_path, mode='w', encoding='utf-8') as f:
        f.write(html)
        print('{}已下载完成'.format(title))
    # exe 文件存放的路径
    config = pdfkit.configuration(wkhtmltopdf='C:\\Program Files\\wkhtmltopdf\\bin\\wkhtmltopdf.exe')
    # 把 html 通过 pdfkit 变成 pdf 文件
    pdfkit.from_file(html_path, pdf_path, configuration=config)


def save_img(img_urls):
    for i in img_urls:
        img_url = 'http://news.cqu.edu.cn' + i
        img_content = get_html(img_url).content
        img_name = img_url.split('/')[-1]
        with open('新闻图片\\' + img_name, mode='wb') as f:
            f.write(img_content)


def main(url):
    html_data = get_html(url).text
    selector = get_pars(html_data)
    lis = selector.css('body > div:nth-child(4) > div > div.lists .title a::attr(href)').getall()
    for li in lis:
        content_data = get_html(li).text
        li_selector = get_pars(content_data)
        title = li_selector.css('.dtitle::text').get()  # 新闻标题
        article = li_selector.css('.acontent').get()  # 新闻内容
        name_list = li_selector.css('.dinfoa a::text').getall()  # 作者
        name = '|'.join(name_list)
        date_list = li_selector.css('.ibox span::text').getall()
        date_str = ''.join(date_list)  # 新闻日期
        img_urls = li_selector.css('.acontent p img::attr(src)').getall()   # 获取新闻内图片
        dit = {
            '标题': title,
            '作者': name,
            '日期': date_str,
            '新闻详情页': li,
        }
        csv_writer.writerow(dit)
        save_article(article, title)
        save_img(img_urls)


if __name__ == '__main__':
    for page in range(1, 11):
        url = 'https://news.cqu.edu.cn/newsv2/news-127.html?&page={}'.format(page)
        main_thread = threading.Thread(target=main, args=(url,))
        main_thread.start()
Python爬取新闻网站通常涉及以下步骤: 1. **选择合适的库**:Pandas用于数据处理,BeautifulSoup或 lxml 用于解析HTML,requests 或者 Scrapy 可以发送HTTP请求抓取网页。 2. **发送请求**:使用 `requests.get()` 发送GET请求到新闻网站网页链接,获取HTML源代码。 3. **解析HTML**:使用 BeautifulSoup 或 lxml 库解析HTML文档,找到包含新闻标题、链接、日期等元素的特定部分。 4. **提取数据**:遍历解析后的HTML结构,提取所需的信息,例如使用`.find_all()` 或 `.select()` 方法查找元素。 5. **存储数据**:将提取的数据组织成列表、字典或其他数据结构,然后保存到CSV、JSON、数据库或本地文件中。 6. **处理反爬机制**:注意遵守网站的Robots协议,可能需要模拟用户行为(如设置User-Agent、延迟请求等),以防止被网站封锁。 7. **异常处理**:添加适当的错误处理代码,以应对可能出现的网络错误、编码问题或页面结构更改。 8. **循环爬取**:如果新闻网站有多页,可以编写循环或递归逻辑来爬取下一页的内容。 9. **动态加载内容**:有些网站使用JavaScript动态加载内容,这时可能需要用到像Selenium这样的工具。 下面是一个简单的示例,展示了基本的爬虫流程: ```python import requests from bs4 import BeautifulSoup url = 'https://www.example.com/news' headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'lxml') articles = soup.select('.news-item') for article in articles: title = article.find('h2').text link = article.find('a')['href'] print(title, link) else: print(f"Failed to fetch data, status code: {response.status_code}") # 将数据保存至CSV或其他合适格式 ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值