圆锥曲线1_基础部分

本文详细介绍了圆锥曲线的基本概念、定义、标准方程及其性质。内容涵盖圆、椭圆、双曲线和抛物线的由来、定义、焦点准线定义、几何元素与方程的关系以及渐近线等特性。同时,探讨了圆锥曲线的切线和特殊量的计算,提供了过定点的切线方程和焦点三角形面积的计算方法。
摘要由CSDN通过智能技术生成

圆锥曲线_1_基础部分

作者 feibinglh

1 简介

  圆锥曲线,最早由古希腊学者梅内克缪斯 Menaechmus进行了系统性的研究,古希腊数学家阿波罗尼奥斯Apollonius有著作《圆锥曲线论》,该书几乎将圆锥曲线的性质网罗殆尽。直到17th帕斯卡笛卡尔才在这方面取得了新的突破,到18th由于欧拉Euler等多人的努力,圆锥曲线的现代理论才有了最终的结果。圆锥曲线的理论应用于物理、天文、航海、建筑等诸多领域。
  基础部分主要介绍圆锥曲线的基本几何性质和代数性质,可以为高中的同学,在应用种需要圆锥曲线相关知识的人员查阅。

2 圆锥曲线的由来

圆锥曲线亦称为圆锥截线,简称锥线。是一类重要的平面二次曲线。它是由不过圆锥顶点的平面与圆锥面相交而成的曲线。

设圆锥的半顶角为 α \alpha α,截面与圆锥的轴所成的角为 θ \theta θ,截面不过锥顶:

1、当 θ ∈ [ 0 , α ) \theta\in[0,\alpha) θ[0,α)时,截面和圆锥的两条母线平行,交线是双曲线
在这里插入图片描述
2、当 θ = α \theta=\alpha θ=α时,截面和圆锥的一条母线平行,交线是抛物线
在这里插入图片描述
3、当 θ ∈ ( α , π / 2 ) \theta\in(\alpha,\pi/2) θ(α,π/2)时,截面和圆锥的每一条母线都相交,交线是椭圆
在这里插入图片描述
4、当 θ = π / 2 \theta=\pi/2 θ=π/2时,界面与圆周轴线垂直,交线是
在这里插入图片描述

如果截面过锥顶:

1、当 θ ∈ [ 0 , α ) \theta\in[0,\alpha) θ[0,α)时,截面和圆锥的交于两相交直线,此时交线可以看作是退化的双曲线;
2、当 θ = α \theta=\alpha θ=α时,截面和圆锥相切,交于一条直线(圆锥的一条母线),此时交线可以看作退化的抛物线;
3、当 θ ∈ ( α , π / 2 ] \theta\in(\alpha,\pi/2] θ(α,π/2]时,截面和圆锥交于一点(圆锥的顶点),此时可以看作退化的椭圆(圆)。

3 圆锥曲线的定义与标准方程

3.1 圆锥曲线的定义

用函数 d ( A , B ) d(A,B) d(A,B)表示平面上两点 A , B A,B A,B之间的距离。用函数 d ( A , l ) d(A,l) d(A,l)表示点 A A A到直线 l l l的距离。

:平面上到一定点的距离为一定长的点的集合。一中同长。该定点称为圆心,该定长称为圆的半径

设平面 π \pi π上一定点为 O O O,定长为 r r r
则该圆为 C i r c l e = { X ∈ π ∣ d ( X , O ) = r } Circle=\{X\in\pi|d(X,O)=r\} Circle={ Xπd(X,O)=r}

椭圆:平面上到两定点的距离之和为一定长的点的集合,(该定长大于两定点间的距离)。二定点称为椭圆的焦点

设平面 π \pi π上两定点为 F 1 , F 2 F_1,F_2 F1,F2,定长为 2 a , 2 a > d ( F 1 , F 2 ) 2a,2a>d(F_1,F_2) 2a2a>d(F1,F2)
则该椭圆为 E c l i p s e = { X ∈ π ∣ d ( X , F 1 ) + d ( X , F 2 ) = 2 a } Eclipse=\{X\in\pi|d(X,F_1)+d(X,F_2)=2a\} Eclipse={ Xπd(X,F1)+d(X,F2)=2a}

双曲线:平面上到两定点的距离之差的绝对值为一定长的点的集合,(该定长小于两定点间的距离)。二定点称为双曲线的焦点

设平面 π \pi π上两定点为 F 1 , F 2 F_1,F_2 F1,F2,定长为 2 a , 2 a < d ( F 1 , F 2 ) 2a,2a<d(F_1,F_2) 2a2a<d(F1,F2)
则该双曲线为 H = { X ∈ π ∣ ∣ d ( X , F 1 ) − d ( X , F 2 ) ∣ = 2 a } H=\{X\in\pi| |d(X,F_1)-d(X,F_2)|=2a\} H={ Xπd(X,F1)d(X,F2)=2a}

抛物线:平面上到一定点的距离与到一定直线的距离之比为1的点的集合(定点不在定直线上)。该定点称为抛物线的焦点,该定直线称为抛物线的准线

设平面为 π \pi π,定点为 F F F,定直线(准线)为 l l l
则该抛物线为 P = { X ∈ π ∣ d ( X , F ) d ( X , l ) = 1 } P=\{X\in\pi|\frac{d(X,F)}{d(X,l)}=1\} P={ Xπd(X,l)d(X,F)=1}

注意

  1. 2 a = d ( F 1 , F 2 ) 2a=d(F_1,F_2) 2a=d(F1,F2)
  • 在椭圆定义下位,退化为线段 F 1 F 2 F_1F_2 F1F2
  • 在双曲线定义下退化为线段 F 1 F 2 F_1 F_2 F1F2的中垂线
  1. 物线的定义方式与圆、椭圆、双曲线有些不同,这种不同是有趣的。

3.2 圆锥曲线的标准方程

以下讨论都在一平面上进行,并且在此平面上建立了笛卡尔直角坐标系。

圆的标准方程:设圆心 O O O的坐标为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),半径为 r r r,则圆的方程为 ( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 \bf{(x-x_0)^2+(y-y_0)^2=r^2} (xx0)2+(yy0)2=r2
在这里插入图片描述

证明:
设圆周上的点 X X X的坐标为 ( x , y ) (x,y) (x,y),则 d ( X , O ) = ( x − x 0 ) 2 + ( y − y 0 ) 2 d(X,O)=\sqrt{(x-x_0)^2+(y-y_0)^2} d(X,O)=(xx0)2+(yy0)2 ,根据圆的定义有 d ( X , O ) = r d(X,O)=r d(X,O)=r,即 ( x − x 0 ) 2 + ( y − y 0 ) 2 = r \sqrt{(x-x_0)^2+(y-y_0)^2}=r (xx0)2+(yy0)2 =r,两边平方即得到圆的标准方程。#

椭圆的标准方程:设椭圆的两焦点坐标分别为 F 1 = ( − c , 0 ) , F 2 = ( c , 0 ) F_1=(-c,0),F_2=(c,0) F1=(c,0),F2=(c,0),到此二点的定长为 2 a 2a 2a,其中 a > c > 0 a>c>0 a>c>0;令 b = a 2 − c 2 b=\sqrt{a^2-c^2} b=a2c2 。则椭圆的方程为 x 2 a 2 + y 2 b 2 = 1 \bf{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} a2x2+b2y2=1
在这里插入图片描述

证明:
设椭圆上的点 X X X的坐标为 ( x , y ) (x,y) (x,y)
d ( X , F 1 ) = ( x + c ) 2 + y 2 , d ( X , F 2 ) = ( x − c ) 2 + y 2 d(X,F_1)=\sqrt{(x+c)^2+y^2},d(X,F_2)=\sqrt{(x-c)^2+y^2} d(X,F1)=(x+c)2+y2 d(X,F2)=(xc)2+y2
根据椭圆的定义有 d ( X , F 1 ) + d ( X , F 2 ) = 2 a d(X,F_1)+d(X,F_2)=2a d(X,F1)+d(X,F2)=2a
( x + c ) 2 + y 2 + ( x − c ) 2 + y 2 = 2 a \sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a (x+c)2+y2 +(xc)2+y2 =2a
等价于 ( x + c ) 2 + y 2 = 2 a − ( x − c ) 2 + y 2 \sqrt{(x+c)^2+y^2}=2a-\sqrt{(x-c)^2+y^2} (x+c)2+y2 =2a(xc)2+y2
两边平方,得到
( x + c ) 2 + y 2 = 4 a 2 + ( x − c ) 2 + y 2 − 4 a ( x − c ) 2 + y 2 (x+c)^2+y^2=4a^2+(x-c)^2+y^2-4a\sqrt{(x-c)^2+y^2} (x+c

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值