对勾函数的性质及其应用

本文介绍了对勾函数的定义、性质、图像及应用。对勾函数在高中数学中常见,它与二次函数和基本不等式紧密关联。函数在x=±ab处有最值,并在(−∞,−ab]和[ab,+∞)上单调递增,(−ab,0)和(0,ab)上递减。图像在x趋于无穷时接近正比例函数,趋于零时接近反比例函数。文中举例说明了对勾函数在分离变量求参数值和综合问题中的应用。" 110871890,8298461,使用JMeter录制HTTP脚本指南,"['性能测试', 'JMeter教程', '脚本录制', 'HTTP代理', '测试自动化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对勾函数的性质及其应用 ===

对勾函数虽然简单,但是由于其和二次函数,基本不等式之间的天然联系,使得其成为高中阶段一个经常考察,也经常使用的函数。

1 定义

对勾函数:对勾函数是形如 f ( x ) = a x + b x f(x)=ax+\frac bx f(x)=ax+xb的函数,其中 a , b > 0 a,b>0 a,b>0

2 性质

定义域 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty,0)\cup(0,+\infty) (,0)(0,+)
奇偶性:对勾函数是奇函数。
单调区间 ( − ∞ , − b a ] ,    [ b a , + ∞ ) (-\infty,-\sqrt\frac ba],\space\space[\sqrt\frac ba,+\infty) (,ab ],  [ab ,+)为单增区间; [ − b a , 0 ) ,    ( 0 , b a ) [-\sqrt\frac ba , 0),\space\space(0,\sqrt\frac ba) [ab ,0),  (0,ab )为单减区间。

只利用单调区间的定义,就可以证明。

最值性质:由于是奇函数,所以只需研究 x > 0 x>0 x>0的部分,在这部分上,在 x = b a x=\sqrt\frac ba x=ab 取得最小值 2 a b 2\sqrt{ab} 2ab 。同理 x < 0 x<0 x<0的部分,在 x = − b a x=-\sqrt\frac ba x=ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值