对勾函数虽然简单,但是由于其和二次函数,基本不等式之间的天然联系,使得其成为高中阶段一个经常考察,也经常使用的函数。
1 定义
对勾函数
:对勾函数是形如 f ( x ) = a x + b x f(x)=ax+\frac bx f(x)=ax+xb的函数,其中 a , b > 0 a,b>0 a,b>0。
2 性质
定义域
: ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty,0)\cup(0,+\infty) (−∞,0)∪(0,+∞)
奇偶性
:对勾函数是奇函数。
单调区间
: ( − ∞ , − b a ] , [ b a , + ∞ ) (-\infty,-\sqrt\frac ba],\space\space[\sqrt\frac ba,+\infty) (−∞,−ab], [ab,+∞)为单增区间; [ − b a , 0 ) , ( 0 , b a ) [-\sqrt\frac ba , 0),\space\space(0,\sqrt\frac ba) [−ab,0), (0,ab)为单减区间。
只利用单调区间的定义,就可以证明。
最值性质
:由于是奇函数,所以只需研究 x > 0 x>0 x>0的部分,在这部分上,在 x = b a x=\sqrt\frac ba x=ab取得最小值 2 a b 2\sqrt{ab} 2ab。同理 x < 0 x<0 x<0的部分,在 x = − b a x=-\sqrt\frac ba x=−ab