[2025-2-21]光刻机、芯片、人工智能、机器人领域国内外学界进展

系列文章目录

[2025-2-19]光刻机、芯片、人工智能、机器人领域国内外学界进展



一、光刻机/半导体领域

  • 富士胶片在SPIE Advanced Lithography + Patterning 2025 会议上展示最新研究成果 (2月23-27日, 圣何塞)
    富士胶片公司宣布,其电子材料研发中心的两位代表,小柳圭佑和赤间明浩,将在 SPIE 2025 先进光刻+图案化会议(SPIE 2025)上,就其最新关于先进光刻技术(特别是 EUV 光刻阻剂和 EUV 显影剂以及纳米压印光刻阻剂)的研究发表两篇论文。

  • EUV光刻技术未来展望
    随着人工智能芯片需求增长,EUV光刻技术作为关键技术,其设备、掩模和光刻胶技术持续改进,但良率提升仍需努力,工艺稳定性需要持续关注。先进节点芯片对支持一切 AI 需求的快速增长正在给行业满足需求的能力带来压力。半导体在从为大型语言模型提供动力的超大规模数据中心到智能手机、物联网设备和自主系统中的边缘 AI 等应用中的需求正在加速。但制造这些芯片严重依赖极端紫外(EUV)光刻技术,这已成为扩大生产规模的最大障碍之一。
    人工智能加速器、大规模 GPU 和高性能 CPU 需要越来越小的晶体管以最大化能效和计算密度。英伟达、AMD 和英特尔等公司的先进人工智能芯片已经依赖于 EUV 制造的 5nm 和 3nm 工艺节点,转向 2nm 全环绕栅极(GAA)晶体管将进一步增加对 EUV 能力的需求。
    今天,只有五家半导体制造商在高产量生产中使用极紫外光刻(EUV)——台积电、三星、英特尔、SK 海力士和美光。日本的 Rapidus 现在成为该市场的第六个参与者。由丰田、索尼、三菱 UFJ 银行、NTT、电装、Kioxia、NEC 和软银组成的八人财团在日本北海道的 IIM-1 工厂安装了 ASML 的 NXE:3800E 极紫外(EUV)光刻机,计划于 2027 年开始大规模生产。

  • GPU加速计算光刻
    计算需求增加的根源在于补偿光刻过程中因衍射或工艺效应而引入的图像误差,而随着芯片设计越来越密集,这一过程需要更长的时间。如果不进行校正,蚀刻在硅上的图案将无法精确再现设计师绘制的形状。边角可能会变圆,线宽可能会与预期不同。处理此问题的传统方法是使用光学邻近校正 (OPC),它可以调整边缘和多边形以优化蚀刻特征并尽可能接近设计意图。
    计算光刻的需求不断增长。每个新节点都意味着每个掩模版的多边形更多,高级工艺需要更多掩模版,并且使用的形状变得越来越复杂。鉴于 GPU 提供大规模并行性并成功加速了芯片开发过程中的其他几个步骤,人们自然会想知道它们是否可以加快 ILT 的计算速度。用户很清楚他们的愿望:使用合理的资源,计算时间少于一天。NVIDIA、TSMC 和 Synopsys 之间的最新合作提供了重要证据,表明 GPU 可以帮助实现这一目标。这项工作涉及将光刻代码从 CPU 转换为 GPU 的三个主要转换:

    • 一些基于图像的操作自然适合通过直接重写进行 GPU 并行化,包括 FFT、卷积和图像处理。这些操作如下图的绿色椭圆所示。

    • 从多边形/边/点迭代到基于像素的计算的算法(例如新模型形式、基于像素的布尔运算和大小调整以及骨架创建)已移至 GPU 友好领域。下图中蓝色椭圆中显示了这些算法。

    • 将非 GPU 友好型数据结构(例如基于多边形的布尔运算和交互、用于创建水平集的多边形 2 像素算法以及轮廓绘制)迁移到 GPU 代码。这需要大量研究、创新和软件工程。下图中红色椭圆显示了这些结构。

    • 来源:利用 GPU 的强大功能和并行性加速计算光刻


二、芯片领域

  • 芯片行业前景乐观

    德勤预测2025年半导体行业收入将达6970亿美元,2030年有望达到1万亿美元。

  • 微软发布量子计算突破性芯片Majorana 1

    微软发布新型量子芯片,声称在量子计算的可靠性和可扩展性上取得突破,研究成果已发表在《自然》杂志,摘要

    • The fusion of non-Abelian anyons is a fundamental operation in measurement-only topological quantum computation1. In one-dimensional topological superconductors (1DTSs)2,3,4, fusion amounts to a determination of the shared fermion parity of Majorana zero modes (MZMs). Here we introduce a device architecture5 that is compatible with future tests of fusion rules. We implement a single-shot interferometric measurement of fermion parity6,7,8,9,10,11 in indium arsenide–aluminium heterostructures with a gate-defined superconducting nanowire12,13,14. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of the quantum capacitance of these quantum dots of up to 1 fF. Our quantum-capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio (SNR) of 1 in 3.6 μs at optimal flux values. From the time traces of the quantum-capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. We discuss the interpretation of our measurements in terms of both topologically trivial and non-trivial origins. The large capacitance shift and long poisoning time enable a parity measurement with an assignment error probability of 1%.
      非阿贝尔任意子的融合是仅测量拓扑量子计算中的一个基本操作。在一维拓扑超导体(1DTSs)中,融合相当于确定马约拉纳零模(MZMs)共享费米子奇偶性。在这里,我们介绍了一种与未来融合规则测试兼容的器件架构。我们通过一个门控超导纳米线在铟砷-铝异质结构中实现了费米子奇偶性的单次干涉测量。干涉仪是通过将邻近的纳米线隧道耦合到量子点中形成的。纳米线导致这些量子点的量子电容发生状态相关的位移,最大可达 1 fF。我们的量子电容测量显示出流过 h/2e 周期的双模态,信号与噪声比(SNR)为 1,在最佳通量值下,3.6 μs 内。从量子电容测量的时间迹中,我们提取出在平面磁场约为 2 T 时,与两个相关状态相关的驻留时间超过 1 ms。我们讨论了我们的测量在拓扑平凡和非平凡起源方面的解释。 大电容偏移和长中毒时间使得奇偶校验测量具有 1%的分配错误概率。(机翻)

    • 来源: Interferometric single-shot parity measurement in InAs–Al hybrid devices


三、人工智能领域

  • 人工智能应用于通用任务评估

    多模态大型语言模型(LLMs),在庞大的数据集上训练,在许多场景中变得越来越有能力。然而,这类模型的性能通常在狭窄的任务中进行评估,就像为特定目标训练的标准机器学习模型一样。我们采取了不同的方法,通过让最新的LLM智能体在解决三个流行游戏(Wordle、Face Quiz 和 Flashback)的一般任务中经受考验。这些游戏对人类来说很容易解决,但它们需要一定程度的自我意识和高级能力来进行实验、从错误中学习并相应地规划。我们发现,LLM智能体在这些一般任务中的表现参差不齐。它们缺乏从错误中学习以及自我纠正的意识。LLMs在最具复杂性的认知子任务中的表现可能不是它们在现实世界环境中部署的限制因素。相反,通过涵盖多个认知任务的一般测试来评估 AGI 追求的LLMs的能力将非常重要,使它们能够解决完整、真实世界的应用。

  • SPIE会议探讨半导体技术创新推动人工智能发展

    SPIE Advances in Patterning Materials and Processes XLII 会议全体会议演讲将回顾半导体技术创新对人工智能发展的驱动作用。


四、机器人领域

  • Figure AI发布新型人形机器人

    • 高速连续控制:Helix 模型首次实现对人形机器人上半身 35 个自由度(手腕、躯干、头部、单手指)的 200Hz 连续控制,动作精度超越人类,延迟低于 100ms,支持 50Hz 实时响应。

    • 双系统架构:采用 “系统 1 + 系统 2” 解耦设计:
      系统 2:基于 7B 参数的 VLM,以 7-9Hz 处理语义理解和场景分析,生成潜在语义向量。
      系统 1:80M 参数的 Transformer,以 200Hz 将语义向量转化为连续动作指令,实现毫秒级实时控制。
      多机器人协作
      支持多机器人共享同一模型权重,首次演示两个机器人通过自然语言指令协作完成复杂任务(如整理杂货),无需预先训练或编程。

    • 零样本泛化能力
      仅需单次语言指令即可操作数千种未见过的物品(如玻璃杯、玩具等),通过语义知识直接转化为抓取动作,打破传统机器人对数据依赖的瓶颈。

    • 单一神经网络与多任务处理
      使用统一神经网络权重学习多种行为(抓取、物品操作、跨机器人交互等),无需任务特定微调,显著降低部署成本。

    • 本地化与商业化部署
      完全运行于嵌入式低功耗 GPU(如 NVIDIA Jetson),可直接用于商业场景,延迟和能耗优化适配家庭等复杂环境。

    • 来源: Helix: A Vision-Language-Action Model for Generalist Humanoid Control

  • **Space Machines 公司联合阿德莱德大学等开发新型机器人测试平台 **

    Space Machines 公司是一家商业航天公司,他们正与阿德莱德大学等机构合作,开发新的机器人测试平台,该项目旨在“开发一个用于空间感知和智能的地面近距离操作机器人测试平台,针对[在轨服务]、空间控制和基于空间的空间域意识(SBSDA)应用,其目标是“开发用于空间域感知的空间感知和智能技术”。。 这表明商业公司与高校在机器人研发领域的合作日益紧密。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

demaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值