奇异值分解SVD学习

原矩阵

SVD分解后的U,Σ,V三矩阵

  • U 左奇异矩阵 A*A.T

可以用于行数的压缩 new_A(dn) = U.T(dm)*A(mn)

  • V 右奇异矩阵 A.T *A

新的坐标系
每个值代表原来n个特征之间的相关性
可得到 特征值个数
可以用于列数即特征维度的压缩 new_A(md)=A(mn)*V(nd)=(V.T(dn)*A.T(nm)).T

  • Σ 奇异值矩阵

奇异值的平方 等于 特征值
只有对角线数不为0,且数值从大到小排列


参考资料:

  1. 降维与压缩——奇异值分解(SVD)
  2. SVD(奇异值分解)小结
  3. 奇异值分解(SVD)
  4. numpy.linalg.svd函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值