黎曼流形学习的学习笔记(2):Neural Ordinary Differential Equations(来源:NIPS 2018 oral) (未完待续)

作者想解决的问题:这是一篇提出新模型的论文,把输入和输出当作微分方程在不同时刻的解,这样做可以节省很多空间,因为不需要计算每一步的具体结果,只需要保存得到的函数。

思路:由于残差网络 (空间上) 和RNN单元 (时间上) 往往都是可以复用的,这里使用ODE方程解出关于时间的方程,可以得到一连串的数据,与原有标签进行对比,更新网络后使得ODE方程的可以得到原有标签的解。但是这篇文章主要是用Neural ODE网络代替ResNet网络,并不是全面替代MLP,CNN,RNN,这些基础网络依旧可以是Neural ODE的组成部分。

        有一个很大的误区 (对我而言) 在于这里神经网络不再是去拟合数据本身,而是拟合数据的变化趋势。但是这两种方法属于不分伯仲的地位,现在没有很充分的证据说明拟合变化趋势一定好,但是在序列类分布下的数据应该是有天然的优势的。

给出残差网络和ODE的区别:

(来自这篇论文的海报)

        残差网络的最终输出就是神经网络的输出加上神经网络的输入,而ODE-Net的最终输出则是神经网络作为原函数在时间上 (深度上)的积分。注意这里的ODE-Net不是简单的相加,或者说不是有限的相加了。

        那么下一个问题来了,怎么去训练他呢?直接更新参数就能得到符合变化趋势的解了吗?

        在一般的深度学习中,依赖的是随机梯度下降算法来更新参数,但是对于这里的NODE方程往往是没有解析解的,因此作者引入了伴随法进行求导,这个方法非常类似于拉普拉斯算法,利用了某个导数的特殊性质,因而跳过了一些求导过程。

从而引出本文中对我而言最重要的内容:Continuous Normalizing Flow, CNF。

还有一些写的非常好的Neural ODE的笔记资料:

Understanding Adjoint Method of Neural ODE - 知乎

David Duvenaud · Bullshit that I and others have said about Neural ODEs · SlidesLive

对于Neural ODE的小研究_冲冲冲!-CSDN博客

https://towardsdatascience.com/the-story-of-adjoint-sensitivity-method-from-meteorology-906ab2796c73

https://vaipatel.com/deriving-the-adjoint-equation-for-neural-odes-using-lagrange-multipliers/

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值