论文笔记Neural Ordinary Differential Equations


这篇文章有多个版本,在最初的版本中存在一些错误,建议下载2019年的最新版。

概述

在残差网络中有下面的形式:
h t + 1 = h t + f ( h t , θ t ) (1) \mathbf h_{t+1} = \mathbf h_{t} + f(\mathbf h_{t}, \theta_t) \tag{1} ht+1=ht+f(ht,θt)(1)
连续的动态系统通常可以用常微分方程(ordinary differential equation, ODE)表示为:
d h ( t ) d t = f ( h ( t ) , t , θ ) (2) \frac{d\mathbf h(t)}{dt} = f(\mathbf h(t), t, \theta) \tag{2} dtdh(t)=f(h(t),t,θ)(2)如果动态系统中的 f f f用神经网络的模块表示,就得到了神经常微分方程Neural ODE,公式(1)可以看做是公式(2)的欧拉离散化(Euler discretization)。
输入是 h ( 0 ) \mathbf h(0) h(0),输出是 h ( T ) \mathbf h(T) h(T),也就是常微分方程初值问题在T时刻的解。

值得注意的是这里的 t t t不代表时间,而是代表网络的层数。但在某些问题下,如时间预测问题下, t t t也可以代表时间。

下图所示是残差网络和神经常微分方程的区别。纵轴代表 t t t(depth),残差网络的状态变化是离散的,在整数位置计算状态的值,而神经常微分方程的状态是连续变化的,计算状态值的位置由求解常微分方程的算法决定。
实际上Neural ODE中的depth的定义并不简单,这在论文第3部分有说,并不是t为多少就是多深,Neural ODE中的depth应该是和隐含状态计算的次数相关的。比如下图中depth到5,resnet确实只计算了5次隐含状态,但Neural ODE其实计算了很多次的隐含状态。隐含状态计算的次数和终点t有关,和ODE的求解算法也有关。

在这里插入图片描述
Neural ODE就是用神经网络模块来表示常微分方程里的 f f f,同时Neural ODE又可以把常微分方程作为一个模块嵌入大的神经网络中。

参数的优化

普通的常微分方程中的参数 θ \theta θ是固定的,但是在Neural ODE中是神经网络的参数,所以需要优化。神经网络的参数用反向传播进行优化,神经常微分方程作为神经网络的一个模块,也需要支持反向传播。因为不只需要优化神经常微分方程中的参数,要需要优化神经常微分方程之前的模块的参数,所以需要求损失函数关于 z ( t 0 ) , t 0 , t 1 , θ \mathbf z(t_0), t_0, t_1, \theta z(t0),t0,t1,θ的梯度。

直接对积分的前向过程做反向传播理论上是可行的,但是需要大量的内存并会导致额外的数值误差。
为了解决这些问题,论文提出使用adjoint sensitivity method来求梯度。adjoint法可以通过求解另一个ODE来计算反传时需要的梯度。
考虑优化一个标量损失函数,这个损失函数的输入是ODE的结果。

在这里插入图片描述
定义伴随状态(adjoint state)为 a ( t ) = − ∂ L ∂ z ( t ) \mathbf a(t)=-\frac{\partial L}{\partial \mathbf z(t)} a(t)=z(t)L
adjoint state满足另一个ODE:
d a ( t ) d t = − a ( t ) ⊤ ∂ f ( z ( t ) , t , θ ) ∂ z \frac{d \mathbf a(t)}{dt} = -\mathbf a(t)^\top \frac{\partial f(\mathbf z(t), t, \theta)}{\partial \mathbf z} dtda(t)=a(t)zf(z(t),t,θ)论文在附录中给出了证明。
通过伴随状态,损失函数关于 z ( t 0 ) , t 0 , t 1 , θ \mathbf z(t_0), t_0, t_1, \theta z(t0),t0,t1,θ的梯度都可以通过求解ODE得到。
∂ L ∂ z ( t 0 ) = a ( t 1 ) − ∫ t 1 t 0 a ( t ) ⊤ ∂ f ( t , z ( t ) , θ ) ∂ z ( t ) d t \frac{\partial L}{\partial \mathbf z(t_0)} = \mathbf a(t_1) - \int_{t_1}^{t_0} \mathbf a(t)^{\top}\frac{\partial f(t,\mathbf z(t), \theta)}{\partial \mathbf z(t)} dt z(t0)L=a(t1)t1t0a(t)z(t)f(t,z(t),θ)dt其中 a ( t 1 ) \mathbf a(t_1) a(t1)是损失函数对最后时刻的隐藏状态的梯度,可以由下一层神经网络的BP获得。

a θ ( t ) = ∂ L ∂ θ ( t ) ,   a t ( t ) = ∂ L ∂ t ( t ) \mathbf a_\theta(t) = \frac{\partial L}{\partial\theta(t)}, \ a_t(t) = \frac{\partial L}{\partial t(t)} aθ(t)=θ(t)L, at(t)=t(t)L
∂ L ∂ θ ( t 0 ) = a θ ( t 1 ) − ∫ t 1 t 0 a ( t ) ⊤ ∂ f ( t , z ( t ) , θ ) ∂ θ d t \frac{\partial L}{\partial\theta(t_0)} = \mathbf a_\theta(t_1) - \int_{t_1}^{t_0} \mathbf a(t)^{\top}\frac{\partial f(t, \mathbf z(t), \theta)}{\partial\theta} dt θ(t0)L=aθ(t1)t1t0a(t)θf(t,z(t),θ)dt其中令 a θ ( t 1 ) = 0 \mathbf a_\theta(t_1)=0 aθ(t1)=0,这一点我目前没有看懂为啥这么设置, θ \theta θ是不随着 t t t而变的。
∂ L ∂ t 1 = ∂ L ∂ z ( t 1 ) ∂ z ( t 1 ) ∂ t 1 = a ( t 1 ) ⊤ f ( t 1 , z ( t 1 ) , θ ) = a t ( t 1 ) \frac{\partial L}{\partial t_1} = \frac{\partial L}{\partial \mathbf z(t_1)} \frac{\partial \mathbf z(t_1)}{\partial t_1} = \mathbf a(t_1)^{\top} f(t_1, \mathbf z(t_1), \theta) = a_t(t_1) t1L=z(t1)Lt1z(t1)=a(t1)f(t1,z(t1),θ)=at(t1) ∂ L ∂ t 0 = a t ( t 1 ) − ∫ t 1 t 0 a ( t ) ⊤ ∂ f ( t , z ( t ) , θ ) ∂ t d t \frac{\partial L}{\partial t_0} = a_t(t_1) - \int_{t_1}^{t_0} \mathbf a(t)^{\top}\frac{\partial f(t, \mathbf z(t), \theta)}{\partial t} dt t0L=at(t1)t1t0a(t)tf(t,z(t),θ)dt
这些导数可以整合放到一个ODE方程中去求解,如下面的算法所示:
在这里插入图片描述
实际使用中不需要考虑梯度计算的问题,因为这些在库(https://github.com/rtqichen/torchdiffeq)中都已经写好了,只需要定义好 f f f直接调用积分算法就可以了。

连续标准化流(Continuous Normalizing Flows)

公式(1)中这种形式也出现在标准化流中(normalizing flows)。
normalizing flows是一种生成算法,可以学习模型生成指定分布的数据,目前广泛用于图像的生成。
normalizing flows要求变换是双射(bijective fucntion),这样就可以利用change of variables theorem直接计算概率。
在这里插入图片描述

为了满足双射的要求,变换需要是精心设计的。normalizing flows有不同的变种方法,其中一种planar normalizing flow有下面的变换:
在这里插入图片描述
主要的运算量来着于计算 ∂ f ∂ z \frac{\partial f}{\partial \mathbf z} zf有趣的是当离散的变换变为连续的变换时,概率的计算变得简单了,不再需要det的计算。
论文给出了下面的定理:

在这里插入图片描述
值得注意的是,后面火起来的生成模型diffusion model,可以扩展为probability flow ODE,也可以使用这个定理。

生成式的隐轨迹时序模型(A generative latent function time-series model)

在时序模型中 t t t可以表示时间。用Neural ODE建模时间序列的好处是可以建模连续的状态,天然适合非规则采样的时间序列(irregularly-sampled data)。
假设每一个时间序列由一个隐轨迹决定。隐轨迹是由初始状态和一组隐含的动态决定的。有观测时间点 t 0 , t 1 , ⋯   , t N t_0,t_1,\cdots,t_N t0,t1,,tN和初始状态 z t 0 z_{t_0} zt0,生成模型如下:
在这里插入图片描述
这里 f f f被定义为一个不随着时间变换的神经网络。外推(Extrapolating)可以得到时间点往前或者往后的预测结果。

这本质是一个隐变量生成模型,所以可以用variational autoencoder(VAE)的算法优化。只不过这里的观测变量时间序列,而传统VAE的观测变量是图像。
为了能表示时间序列,这里encoder使用的是RNN模型。生成初始隐含状态后,由Neural ODE生成其他时间点的隐含状态,再由一个decoder网络计算 p ( x ∣ z ) p(x|z) p(xz)
在这里插入图片描述

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: 神经常微分方程(Neural Ordinary Differential Equations)是一种新兴的深度学习模型,它将神经网络与常微分方程相结合,可以用来建模时间序列数据和动态系统。相比于传统的神经网络,神经常微分方程可以更好地处理长期依赖和非线性动态系统,并且具有更好的可解释性。该模型已经在图像处理、自然语言处理和物理学等领域取得了很好的效果。 ### 回答2: 神经普通微分方程(neural ordinary differential equations,N-ODEs)是近年来机器学习领域中受到广泛关注的一种新兴模型。N-ODEs 将神经网络扩展为连续时间模型,通过时间连续的方式对神经网络进行了建模,从而在某些应用领域中表现出了很强的优势。 相对于离散时间模型,连续时间模型更符合许多现实世界问题的本质特征,尤其是一些物理系统模型和理论计算模型中。 然而,一般的微分方程模型很难适应复杂的高维数据和非线性问题的建模,在这种情况下,神经网络作为一种现代的高效模型可以解决这种问题。于是N-ODEs的提出,使得神经网络可以被用来解决更多不同类型的问题。 N-ODEs 的核心思想在于将神经网络转换为一个具有时间特性的连续时间模型,即在神经网络连接权重的基础上引入时间变量t。这使得神经网络每个神经元的输入输出和权重的调整都与时间有关。在连续时间模型中,每个神经元都被表示为一个微分方程,而整个神经网络则被表示为多个微分方程联立。这样就将神经网络的拓扑结构和连续时间特性融合在一起。这使得N-ODEs在建模一些非线性、高维的问题时具有比传统神经网络更好的表现力和泛化能力。 N-ODEs 的引入为解决复杂问题提供了一个新的思路,也为神经网络和微分方程研究提供了一个新的方向。它在一些应用领域的表现,如物理模型场景下的建模,证明了它的潜力和可行性。但它也存在一些缺点,如计算效率较低、训练模型的复杂度较高等。因此,继续在N-ODEs理论和应用的相关研究中深入探讨N-ODEs的优化和推广,展望N-ODEs成为更加强大的建模工具。 ### 回答3: 神经常微分方程(Neural Ordinary Differential Equations,简称 NODEs)是一种用于建模复杂神经网络的方法。与传统的深度神经网络不同,NODEs使用常微分方程(Ordinary Differential Equations,简称ODEs)来描述神经网络内部的动力学过程和状态变化。 NODEs的基本思想是将一个复杂的神经网络模型转化为一个连续的、非线性的微分方程,通过求解微分方程得到神经网络的输出。这种方法的优点是能够减少网络的参数数量,提高模型的稳定性和泛化性能。NODEs还能够对数据进行连续时间处理,可以通过微分方程来模拟神经网络的动态过程,更好地理解神经网络的内在变化。 NODEs的理论基础是 ODE神经网络,ODE神经网络是一个使用ODE来表达层之间非线性映射的深度神经网络。将每个神经网络层的输入输出视为ODE函数的参数和值,在通过求解ODE函数的过程中获得输出值。相比于传统的神经网络结构,ODE神经网络能够更好的处理时间序列数据,同时具有更好的可解释性。 NODEs与ODE神经网络的不同在于,NODEs的输出不仅仅是一个函数值,而是整个ODE函数本身。这样,NODEs能够将每个神经网络层的输入输出对应为ODE函数的初始条件和解。通过不断求解ODE模型,得到的连续函数可以方便地应用于各种实际问题,从而极大地扩展了神经网络在科学研究和工程应用方面的应用范围。 总的来说,NODEs代表了对神经网络模型的一种新的理解和描述方法,它不断拓展着神经网络在理论研究和应用领域的应用空间。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值