Mac mini m4部署大模型2

1. 安装Homebrew管理软件包简化软件安装流程

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

增加环境变量配置 export PATH="/opt/homebrew/bin:$PATH"到~./zshrc中并执行source ~/.zshrc

2.在store app安装Xcode

不需要Xcode IDE的,可以直接安装xcode-select --install 

xcode-select --install 是 macOS 系统中用于 ‌安装 Xcode 命令行工具(Command Line Tools, CLT)‌ 的核心命令。其作用如下:1. ‌安装轻量级开发工具包‌ 2. ‌解决开发环境依赖

3.从Docker官网下载docker来下载管理部分软件

配置扩展坞磁盘存放软件

4.安装miniconda到扩展坞minimate

安装

mkdir -p /Volumes/soft/miniconda3

curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o /Volumes/soft/miniconda3/miniconda.sh

bash /Volumes/soft/miniconda3/miniconda.sh  -b -u -p /Volumes/soft/miniconda3

rm /Volumes/soft/miniconda3/miniconda.sh

环境配置

~/.zshrc添加export PATH="/Volumes/soft/miniconda3/bin:$PATH"

检查环境

执行conda env list,输出一下信息则配置成功

# conda environments:

base                   /Volumes/soft/miniconda3

指定安装3.11版本的Python

conda create -n scrapy python=3.11

激活虚拟环境

conda activate scrapy

### 关于 Mac Mini M4 的 AI 配置与性能评测 #### AI 配置详情 新款 Mac mini M4 特别针对人工智能任务进行了优化。该设备配备了强大的 M4 芯片,提供卓越的处理能力和高效的能耗管理。对于开发者而言,16GB RAM 和高达 273 GB/s 的内存带宽使得多线程计算密集型应用运行更加流畅[^3]。 #### 性能评测 为了评估其在实际应用场景下的表现,有测试采用了 ComfyUI 框架来衡量 Mac mini M4 在执行 AI 工作负载时的表现。具体来说,在 MPS (Metal Performance Shaders) fp16 模式下进行了一系列实验,结果显示这款机器能够高效完成图像识别、自然语言处理等多种类型的 AI 计算任务[^2]。 ```python import comfyui as cu def run_ai_benchmark(): model = cu.load_model('path/to/model') data_loader = cu.create_data_loader('dataset/path') results = [] for batch in data_loader: output = model(batch, mode='fp16') # 使用半精度浮点数加速推理过程 metrics = compute_metrics(output) results.append(metrics) avg_performance = summarize_results(results) return avg_performance print(run_ai_benchmark()) ``` 这段 Python 代码展示了如何利用 ComfyUI 库加载预训练模型并对其进行基准测试的过程。通过设置 `mode='fp16'` 参数可以启用 Metal Performance Shaders 提供的支持,从而提高运算速度和效率。 #### 开发者支持 除了硬件层面的优势外,苹果还提供了完善的开发工具链和服务生态系统,帮助开发者充分利用这些先进特性。Xcode IDE 中内置了多种调试选项以及性能分析工具,便于快速定位瓶颈所在;同时 Swift 编程语言本身也具备良好的并发性和安全性特征,非常适合构建高性能的应用程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值