【动手学深度学习PyTorch】含并行连结的网络(GoogLeNet)

新星杯·14天创作挑战营·第16期 10w+人浏览 499人参与

含并行连结的网络(GoogLeNet)

一、Inception块

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。

image-20250930110343321

Inception块由四条并行路径组成。
前三条路径使用窗口大小为1×11\times 11×13×33\times 33×35×55\times 55×5的卷积层,从不同空间大小中提取信息。
中间的两条路径在输入上执行1×11\times 11×1卷积,以减少通道数,从而降低模型的复杂性。
第四条路径使用3×33\times 33×3最大汇聚层,然后使用1×11\times 11×1卷积层来改变通道数。
这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)

二、GoogLeNet模型

GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。
第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。

image-20250930153834491

现在,我们逐一实现GoogLeNet的每个模块。第一个模块使用64个通道、7×77\times 77×7卷积层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二个模块使用两个卷积层:第一个卷积层是64个通道、1×11\times 11×1卷积层;第二个卷积层使用将通道数量增加三倍的3×33\times 33×3卷积层。
这对应于Inception块中的第二条路径。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三个模块串联两个完整的Inception块。
第一个Inception块的输出通道数为64+128+32+32=25664+128+32+32=25664+128+32+32=256,四个路径之间的输出通道数量比为64:128:32:32=2:4:1:164:128:32:32=2:4:1:164:128:32:32=2:4:1:1
第二个和第三个路径首先将输入通道的数量分别减少到96/192=1/296/192=1/296/192=1/216/192=1/1216/192=1/1216/192=1/12,然后连接第二个卷积层。第二个Inception块的输出通道数增加到128+192+96+64=480128+192+96+64=480128+192+96+64=480,四个路径之间的输出通道数量比为128:192:96:64=4:6:3:2128:192:96:64 = 4:6:3:2128:192:96:64=4:6:3:2
第二条和第三条路径首先将输入通道的数量分别减少到128/256=1/2128/256=1/2128/256=1/232/256=1/832/256=1/832/256=1/8

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂,
它串联了5个Inception块,其输出通道数分别是192+208+48+64=512192+208+48+64=512192+208+48+64=512160+224+64+64=512160+224+64+64=512160+224+64+64=512128+256+64+64=512128+256+64+64=512128+256+64+64=512112+288+64+64=528112+288+64+64=528112+288+64+64=528256+320+128+128=832256+320+128+128=832256+320+128+128=832
这些路径的通道数分配和第三模块中的类似,首先是含3×33×33×3卷积层的第二条路径输出最多通道,其次是仅含1×11×11×1卷积层的第一条路径,之后是含5×55×55×5卷积层的第三条路径和含3×33×33×3最大汇聚层的第四条路径。
其中第二、第三条路径都会先按比例减小通道数。
这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块包含输出通道数为256+320+128+128=832256+320+128+128=832256+320+128+128=832384+384+128+128=1024384+384+128+128=1024384+384+128+128=1024的两个Inception块。
其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。
需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。
最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。
[为了使Fashion-MNIST上的训练短小精悍,我们将输入的高和宽从224降到96],这简化了计算。下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 64, 24, 24])
Sequential output shape:	 torch.Size([1, 192, 12, 12])
Sequential output shape:	 torch.Size([1, 480, 6, 6])
Sequential output shape:	 torch.Size([1, 832, 3, 3])
Sequential output shape:	 torch.Size([1, 1024])
Linear output shape:	 torch.Size([1, 10])

三、训练模型

使用Fashion-MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为96×9696 \times 9696×96分辨率。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.262, train acc 0.900, test acc 0.886
3265.5 examples/sec on cuda:0

image-20250930154231608

四、小结

  • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用1×11×11×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
  • GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。

内容声明
本文基于开源教材《动手学深度学习》(Dive into Deep Learning, 作者:Aston Zhang、Zachary C. Lipton、Mu Li、Alexander J. Smola 等)整理,原始项目地址:https://github.com/d2l-ai/d2l-zh。
在整理过程中对部分内容进行了删改和补充,仅用于个人学习与交流,版权归原作者所有。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值