动手学深度学习7.4 含并行连结的网络(GoogLeNet)-笔记&练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:27 含并行连结的网络 GoogLeNet / Inception V3【动手学深度学习v2】_哔哩哔哩_bilibili

本节教材地址:7.4. 含并行连结的网络(GoogLeNet) — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>googlenet.ipynb


含并行连结的网络(GoogLeNet)

在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet (arxiv.org/pdf/1409.4842) 的网络架构大放异彩。 GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。 这篇论文的一个重点是解决了什么样大小的卷积核最合适的问题。 毕竟,以前流行的网络使用小到 1×1 ,大到 11×11 的卷积核。 本文的一个观点是,有时使用不同大小的卷积核组合是有利的。 本节将介绍一个稍微简化的GoogLeNet版本:我们省略了一些为稳定训练而添加的特殊特性,现在有了更好的训练方法,这些特性不是必要的。

(Inception块)

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。这很可能得名于电影《盗梦空间》(Inception),因为电影中的一句话“我们需要走得更深”(“We need to go deeper”)。

如 图7.4.1 所示,Inception块由四条并行路径组成。 前三条路径使用窗口大小为 1×1 、 3×3 和 5×5 的卷积层,从不同空间大小中提取信息。 中间的两条路径在输入上执行 1×1 卷积,以减少通道数,从而降低模型的复杂性。 第四条路径使用 3×3 最大汇聚层,然后使用 1×1 卷积层来改变通道数。 这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)

那么为什么GoogLeNet这个网络如此有效呢? 首先我们考虑一下滤波器(filter)的组合,它们可以用各种滤波器尺寸探索图像,这意味着不同大小的滤波器可以有效地识别不同范围的图像细节。 同时,我们可以为不同的滤波器分配不同数量的参数。

[GoogLeNet模型]

如 图7.4.2 所示,GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。 第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。

现在,我们逐一实现GoogLeNet的每个模块。第一个模块使用64个通道、 7×7 卷积层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二个模块使用两个卷积层:第一个卷积层是64个通道、 1×1 卷积层;第二个卷积层使用将通道数量增加三倍的 3×3 卷积层。 这对应于Inception块中的第二条路径。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三个模块串联两个完整的Inception块。 第一个Inception块的输出通道数为 64+128+32+32=256 ,四个路径之间的输出通道数量比为 64:128:32:32=2:4:1:1 。 第二个和第三个路径首先将输入通道的数量分别减少到 96/192=1/2 和 16/192=1/12 ,然后连接第二个卷积层。第二个Inception块的输出通道数增加到 128+192+96+64=480 ,四个路径之间的输出通道数量比为 128:192:96:64=4:6:3:2 。 第二条和第三条路径首先将输入通道的数量分别减少到 和128/256=1/2$和$32/256=1/8 。

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂, 它串联了5个Inception块,其输出通道数分别是 192+208+48+64=512 、 160+224+64+64=512 、 128+256+64+64=512 、 112+288+64+64=528 和 256+320+128+128=832 。 这些路径的通道数分配和第三模块中的类似,首先是含 3×3 卷积层的第二条路径输出最多通道,其次是仅含 1×1 卷积层的第一条路径,之后是含 5×5 卷积层的第三条路径和含 3×3 最大汇聚层的第四条路径。 其中第二、第三条路径都会先按比例减小通道数。 这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块包含输出通道数为 256+320+128+128=832 和 384+384+128+128=1024 的两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。 需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。 最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1,1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。 [为了使Fashion-MNIST上的训练短小精悍,我们将输入的高和宽从224降到96],这简化了计算。下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
输出结果:
Sequential output shape:     torch.Size([1, 64, 24, 24])
Sequential output shape:     torch.Size([1, 192, 12, 12])
Sequential output shape:     torch.Size([1, 480, 6, 6])
Sequential output shape:     torch.Size([1, 832, 3, 3])
Sequential output shape:     torch.Size([1, 1024])
Linear output shape:     torch.Size([1, 10])

[训练模型]

和以前一样,我们使用Fashion-MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为 96×96 分辨率。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
输出结果:
loss 0.247, train acc 0.905, test acc 0.882
1396.1 examples/sec on cuda:0


补充


小结

  • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用 1×1 卷积层减少每像素级别上的通道维数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)
  • 11
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scdifsn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值