pandas 之切割 cut 与 qcut 功能与区别

本文介绍了pandas中的cut和qcut函数,用于将Series数据进行分组。cut按值切割,根据数据大小范围分为n组,qcut则是等频切割,确保各组元素数量接近。通过示例展示了这两个函数的使用方法和结果差异。
摘要由CSDN通过智能技术生成

一、功能:

两者功能相似,都是将一个Series切割成若干个分组

api 可以看官网详细介绍,大致如下:

pandas.qcut(xqlabels=Noneretbins=Falseprecision=3duplicates='raise')

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')

其中最常用的有个三个参数, x -代表数据集,这里一般是Series

                                                q -为一个整数或数组,代表切割成几组或者具体的切割方式

                                                 labels -代表切割后的分组名称

返回值是一个 Categorical 类型,是一个可迭代对象,其中即包含了一个series,即 x中每个元素的分组标记。还包含了整体的分组情况。

二、区别

qcut 是等频切割,即基本保证每个组里的元素个数是相等的

cut是按值切割,即根据数据值的大小范围等分成n组,落入这个范围的分别进入到该组。

 

三、例题

ages = np.array([1,5,10,40,36,12,58,62,77,89,100,18,20,25,30,32])
cc = pd.qcut(a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值