C++进阶 —— AVL树

目录

AVL树的概念

AVL树节点的定义

AVL树的查找

AVL树的插入

旋转

右单旋

左单旋 

左右双旋

右左双旋

插入实现

总结

AVL树的验证

AVL树的性能


前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此找到一种办法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1 / 0 / 1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O\left ( \log N \right ),搜索时间复杂度O\left ( \log N \right )。 


AVL树节点的定义

AVL树的节点内容包括:1、左右节点的地址;2、平衡因子;3、自身存储的数据;4、父节点的地址。具体内容如下结构体所示:

template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // 平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

按照这个节点的结构体我们建立一个AVL树的类,类的框架如下:

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
private:
	Node* _root = nullptr;
};

在框架中补充类所需要的四个默认成员函数:

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
    //强制让编译器生成构造函数
	AVLTree() = default;

	AVLTree(const AVLTree<K, V>& t)
	{
		_root = Copy(t._root);
	}

	AVLTree<K, V>& operator=(AVLTree<K, V> t)
	{
		swap(_root, t._root);
		return *this;
	}

	~AVLTree()
	{
		Destroy(_root);
		_root = nullptr;
	}
private:
	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;

		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}

	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;

		Node* newRoot = new Node(root->_key, root->_value);
		newRoot->_left = Copy(root->_left);
		newRoot->_right = Copy(root->_right);
		return newRoot;
	}

	Node* _root = nullptr;
};

AVL树的查找

我们需要在AVL树中查找一个节点,只需要利用好二叉搜索树的特性即可:

Node* Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else
		{
			return cur;
		}
	}
	return nullptr;
}

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

首先来看每次插入的节点可能会有几种情况,会如何影响父节点的平衡因子呢? 

 可以从图中看到,插入有三种情况,第一种插入后父节点变平衡,第二种原本平衡的父节点被打破,第三种是在已经不平衡的那个子树上又增加节点导致违规,这需要旋转操作。


旋转

什么是旋转操作呢?如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

右单旋

1、新节点插入较高左子树的左侧---左左:右单旋

上图在插入前,AVL树是平衡的,新节点插入到30的左子树中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树:如果是根节点,旋转完成后,要更新根节点;如果是子树,可能是某个节点的左子树,也可能是右子树。
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;

	subL->_right = parent;

	Node* ppNode = parent->_parent;
	parent->_parent = subL;

	if (parent == _root)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		if (ppNode->_left == parent)
		{
			ppNode->_left = subL;
		}
		else
		{
			ppNode->_right = subL;
		}

		subL->_parent = ppNode;
	}

	parent->_bf = subL->_bf = 0;
}
左单旋 

2. 新节点插入较高右子树的右侧---右右:左单旋

实现及情况考虑可参考右单旋,以下为代码的实现:

void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;

	subR->_left = parent;
	Node* ppNode = parent->_parent;

	parent->_parent = subR;

	if (parent == _root)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else
	{
		if (ppNode->_right == parent)
		{
			ppNode->_right = subR;
		}
		else
		{
			ppNode->_left = subR;
		}
		subR->_parent = ppNode;
	}

	parent->_bf = subR->_bf = 0;
}
左右双旋

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。需要注意的是双旋完成后要对平衡因子进行更新。

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	int bf = subLR->_bf;

	RotateL(parent->_left);
	RotateR(parent);

	if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}
右左双旋

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋。 其实现方法类似,代码如下: 

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	RotateR(subR);
	RotateL(parent);

	subRL->_bf = 0;
	if (bf == 1)
	{
		subR->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1)
	{
		parent->_bf = 0;
		subR->_bf = 1;
	}
	else if
	{
		parent->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

插入实现

 完成了以上四种旋转就可以实现AVL树的插入操作:

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		// 更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 不平衡了,旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					RotateLR(parent);
				}

				break;
			}
			else
			{
				assert(false);
			}
		}

		return true;
	}

总结

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑:

1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

  1. 当pSubR的平衡因子为1时,执行左单旋
  2. 当pSubR的平衡因子为-1时,执行右左双旋

2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

  1. 当pSubL的平衡因子为-1是,执行右单旋
  2. 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。


AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	Node* _root = nullptr;
};

2. 验证其为平衡树

证明为平衡树需要满足以下两个条件: 

  1. 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  2. 节点的平衡因子是否计算正确
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool IsBalance()
	{
		return _IsBalance(_root);
	}

	int Height()
	{
		return _Height(_root);
	}

	int Size()
	{
		return _Size(_root);
	}

private:
	int _Size(Node* root)
	{
		return root == nullptr ? 0 : _Size(root->_left) + _Size(root->_right) + 1;
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}

	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		// 不平衡
		if (abs(leftHeight - rightHeight) >= 2)
		{
			cout << root->_kv.first << endl;
			return false;
		}
		
		// 顺便检查一下平衡因子是否正确
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << endl;
			return false;
		}

		return _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}
private:
	Node* _root = nullptr;
};

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即\log \left ( N \right )。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值