鱼弦:公众号【红尘灯塔】,CSDN内容合伙人、CSDN新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
强化学习是一种机器学习方法,通过代理(agent)与环境进行交互来学习最优的行为策略。在强化学习中,代理根据环境的状态选择动作,然后观察环境的反馈(奖励信号)并更新策略,目标是通过与环境的交互来最大化累积奖励。
在问题中,将生产计划优化建模为强化学习问题。每个时间步,环境的状态包括当前产品库存和机器状态。代理根据当前状态选择生产哪种产品,然后观察生产时间、满足客户需求情况等反馈,并根据这些反馈来更新策略,以实现尽可能少的切换生产机器的产品类型和平衡机器的工作时间。
强化学习中的环境(ProductionEnv
)是一个自定义的Gym环境,其中定义了状态空间、动作空间和相应的状态转移函数。代理(agent
ÿ