【强化学习】python 生产计划优化(马尔可夫决策过程)

本文介绍了如何将生产计划优化问题转化为强化学习的马尔可夫决策过程,通过Python和RLlib库训练代理以学习最优生产策略。利用环境状态、动作和奖励信号,优化库存管理与机器工作时间。引用了相关强化学习资源,并指出强化学习在生产计划优化领域的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

鱼弦:公众号【红尘灯塔】,CSDN内容合伙人、CSDN新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

强化学习是一种机器学习方法,通过代理(agent)与环境进行交互来学习最优的行为策略。在强化学习中,代理根据环境的状态选择动作,然后观察环境的反馈(奖励信号)并更新策略,目标是通过与环境的交互来最大化累积奖励。

在问题中,将生产计划优化建模为强化学习问题。每个时间步,环境的状态包括当前产品库存和机器状态。代理根据当前状态选择生产哪种产品,然后观察生产时间、满足客户需求情况等反馈,并根据这些反馈来更新策略,以实现尽可能少的切换生产机器的产品类型和平衡机器的工作时间。

强化学习中的环境(ProductionEnv)是一个自定义的Gym环境,其中定义了状态空间、动作空间和相应的状态转移函数。代理(agentÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值