【金马五校赛】1 + 2 = 3?(fib数列,规律)

链接:https://www.nowcoder.com/acm/contest/91/F
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
小Y在研究数字的时候,发现了一个神奇的等式方程,他屈指算了一下有很多正整数x满足这个等式,比如1和2,现在问题来了,他想知道从小到大第N个满足这个等式的正整数,请你用程序帮他计算一下。

(表示按位异或运算)

输入描述:
第一行是一个正整数,表示查询次数。

接着有T行,每行有一个正整数,表示小Y的查询。

输出描述:
对于每一个查询N,输出第N个满足题中等式的正整数,并换行。
示例1
输入
4
1
2
3
10
输出
1
2
4
18

分析:很容易发现满足题目的等式的x的二进制数的相邻位一定不同,然后可以发现与斐波那契数列的练习,但是这里卡住了很久。。 最后也发现一个比较好玩的规律,每一组都是斐波那契数列数
比如:第19项 x = 41 = 2^5 + 2^3 +2^0
fib[5]=13, fib[3]=2, fib[0]=1
然后可以写出来了
下面给出学长的分析
这里写图片描述

#include <bits/stdc++.h>
using namespace std;

#define mem(a,n) memset(a,n,sizeof(a))
#define rep(i,a,n) for(int i=a;i<n;i++)

typedef long long ll;
const double eps=1e-5;
const int N=1e5+5;
const int INF=0x3f3f3f3f;
const int dir[4][2]= {1,0,-1,0,0,1,0,-1};

ll f[105];
void init()
{
    f[0]=1,f[1]=2;
    for(int i=2;i<90;i++)
        f[i]=f[i-1]+f[i-2];
}
int main()
{
    int T;
    init();
    scanf("%d",&T);
    while(T--)
    {
        ll x;
        scanf("%lld",&x);
        ll ans=0;
        while(x)
        {
            for(int i=1;i<90;i++)
            {
                if(f[i]>x)
                {
                    x-=f[i-1];
                    ans+=(1LL<<(i-1));
                    break;
                }
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值