链接:https://www.nowcoder.com/acm/contest/91/F
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
小Y在研究数字的时候,发现了一个神奇的等式方程,他屈指算了一下有很多正整数x满足这个等式,比如1和2,现在问题来了,他想知道从小到大第N个满足这个等式的正整数,请你用程序帮他计算一下。
(表示按位异或运算)
输入描述:
第一行是一个正整数,表示查询次数。
接着有T行,每行有一个正整数,表示小Y的查询。
输出描述:
对于每一个查询N,输出第N个满足题中等式的正整数,并换行。
示例1
输入
4
1
2
3
10
输出
1
2
4
18
分析:很容易发现满足题目的等式的x的二进制数的相邻位一定不同,然后可以发现与斐波那契数列的练习,但是这里卡住了很久。。 最后也发现一个比较好玩的规律,每一组都是斐波那契数列数
比如:第19项 x = 41 = 2^5 + 2^3 +2^0
fib[5]=13, fib[3]=2, fib[0]=1
然后可以写出来了
下面给出学长的分析
#include <bits/stdc++.h>
using namespace std;
#define mem(a,n) memset(a,n,sizeof(a))
#define rep(i,a,n) for(int i=a;i<n;i++)
typedef long long ll;
const double eps=1e-5;
const int N=1e5+5;
const int INF=0x3f3f3f3f;
const int dir[4][2]= {1,0,-1,0,0,1,0,-1};
ll f[105];
void init()
{
f[0]=1,f[1]=2;
for(int i=2;i<90;i++)
f[i]=f[i-1]+f[i-2];
}
int main()
{
int T;
init();
scanf("%d",&T);
while(T--)
{
ll x;
scanf("%lld",&x);
ll ans=0;
while(x)
{
for(int i=1;i<90;i++)
{
if(f[i]>x)
{
x-=f[i-1];
ans+=(1LL<<(i-1));
break;
}
}
}
printf("%lld\n",ans);
}
return 0;
}