Caffe中对cifar10执行train操作

参考Caffe source中examples/cifar10目录下内容。

cifar10是一个用于普通物体识别的数据集,cifar10被分为10类,分别为airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck,关于cifar10的详细介绍可以参考: http://blog.csdn.net/fengbingchun/article/details/53560637

调整后的cifar10_quick_solver.prototxt内容如下:

# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10

# The train/test net protocol buffer definition
net: "E:/GitCode/Caffe_Test/test_data/model/cifar10/cifar10_quick_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
# The learning rate policy
lr_policy: "fixed"
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 4000
# snapshot intermediate results
snapshot: 4000
snapshot_format: HDF5
snapshot_prefix: "E:/GitCode/Caffe_Test/test_data/model/cifar10/cifar10_quick"
# solver mode: CPU or GPU
#solver_mode: GPU
调整后的cifar10_quick_train_test.prototxt内容如下:

name: "CIFAR10_quick"
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mean_file: "E:/GitCode/Caffe_Test/test_data/model/cifar10/mean.binaryproto"
  }
  data_param {
    source: "E:/GitCode/Caffe_Test/test_data/cifar10/cifar10_train_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "cifar"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mean_file: "E:/GitCode/Caffe_Test/test_data/model/cifar10/mean.binaryproto"
  }
  data_param {
    source: "E:/GitCode/Caffe_Test/test_data/cifar10/cifar10_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.0001
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "pool1"
  top: "pool1"
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 32
    pad: 2
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: AVE
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 64
    pad: 2
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3"
  top: "pool3"
  pooling_param {
    pool: AVE
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool3"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 64
    weight_filler {
      type: "gaussian"
      std: 0.1
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "gaussian"
      std: 0.1
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip2"
  bottom: "label"
  top: "loss"
}
cifar10_quick_train_test.prototxt可视化结果如下图(http://ethereon.github.io/netscope/quickstart.html):


训练代码如下: 它既可以在CPU也可以在GPU模式下运行,分别对应的工程为Caffe_Test和Caffe_GPU_Test,在GPU模式下耗时较少。

#include "funset.hpp"
#include "common.hpp"

int cifar10_train()
{
#ifdef CPU_ONLY
	caffe::Caffe::set_mode(caffe::Caffe::CPU);
#else
	caffe::Caffe::set_mode(caffe::Caffe::GPU);
#endif

	const std::string filename{ "E:/GitCode/Caffe_Test/test_data/model/cifar10/cifar10_quick_solver.prototxt" };
	caffe::SolverParameter solver_param;
	if (!caffe::ReadProtoFromTextFile(filename.c_str(), &solver_param)) {
		fprintf(stderr, "parse solver.prototxt fail\n");
		return -1;
	}

	cifar10_convert(); // convert cifar10 to LMDB
	if (cifar10_compute_image_mean() != 0) { // compute cifar10 image mean, generate mean.binaryproto
		fprintf(stderr, "compute cifar10 image mean fail\n");
		return -1;
	}

	caffe::SGDSolver<float> solver(solver_param);
	solver.Solve();

	fprintf(stderr, "cifar10 train finish\n");
	return 0;
}
执行结果如下图所示:

默认最大迭代次数为4000,此时accuracy为0.7062;如果设置最大迭代次数为10000,则此时accuracy约为0.72。

GitHubhttps://github.com/fengbingchun/Caffe_Test

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值