【机器学习】 逻辑回归原理及代码

eee857d367471e590bd7ee0563a52a8b.jpeg

大家好,我是机器侠~  

1

Linear Regression(线性回归)

        在了解逻辑回归之前,我们先简单介绍一下Linear Regression(线性回归)。

线性回归是利用连续性的变量来预估实际数值(比如房价),通过找出自变量与因变量之间的线性关系,确定一条最佳直线,称之为回归线。并且,我们将这个回归关系表示为

2

Logistic Regression(逻辑回归)

逻辑回归概述

        与线性回归不同的是,逻辑回归并不是一个回归算法,它是一个分类算法;通过拟合一个逻辑函数来预测一个离散型因变量的值(预测一个概率值,基于0与1),来描述自变量对因变量的影响程度。自变量可以有一个,也可以有多个。其中,一个自变量被称为一元逻辑回归,而多个自变量被称为多元逻辑回归。
以实例而言,逻辑回归可以预测一封邮件是垃圾邮件的概率是多少。同时,因为结果是概率值,它同样可以对点击率等结果做排名模型预测。

逻辑回归步骤

        首先,寻找一个合适的预测函数h(x)来预测输入数据的判断结果。其次,构造一个损失函数cost,来表示预测的函数值h(x)与训练集数据类别y的偏差(二者的差值等形式)。对所有训练数据的损失求平均或者求和记为J(θ),表示所有训练数据预测值和世纪类别的偏差。我们很容易得到J(θ)越小,预测得越准确,所以我们的目的就是寻找数J(θ)的最小值。寻找最小值有许多方法,这里我们通过梯度下降法(Gradient Descent)进行展示。
接下来,我们对上述内容进行详细解读:
预测函数

 损失函数 

        损失函数是由逻辑回归的预测函数公式推导而得,值得一提的是,上述的ω^T并不是ω的T次方,而是ω的转置的意思。如果您学习过线性代数的知识应该能很容易理解转置的含义,但没有学习过也没有关系,把它看成ωx使用即可。详细的推导过程不是必须要掌握的知识点,我们会将这部分内容放在文章附录,如果您感兴趣,可以在之后查看。
我们对损失函数进行求导,得到以下结果:

        这样一看我们似乎已经完成了逻辑回归的全部内容。但事实上,在机器学习当中,我们的函数常常是多维高阶的,仅仅依靠令导数为 0 然后求解方程的方法往往无法解决问题,所以我们需要另一个方法来寻找损失函数的最小值。通常,我们使用梯度下降的方法


什么是梯度下降

我们可以观察一个最简单的函数

4c49ee119089cb767baa26ae05cabd5f.png

1.首先对 x 取任意一个值比如-0.8,我们可以得到一个 y 值:

d49fe4344d08a7f7aeaafa89f8b4c9aa.png

2.其次,求更新方向。例如我们向正方向更新,得到图像如下:

4f9994c36a56ced38f0b198fbc44f620.png

        可以发现,当我们向着正方向更新的时候,我们正在逐渐接近最终的结果(零点)。而两次更新之间的间隔(这里是 0.1),在机器学习当中,我们称为学习率。当学习率过大时,x 可能不能很好地收敛;当学习率过小时,x 的收敛速度可能过慢。

3.不断重复第 1、2 步,直到 x 收敛
以上就是梯度下降的主要思想,我们可以得到下降公式:

代码示例

以鸢尾花分类为例。

# 导入数据
from sklearn.datasets import load_iris
iris = load_iris()

在这里我们先取前两列数据(花萼长度与宽度)进行回归分类

X = iris.data[:,:2]
Y = iris.target
# 将数据划分为训练集和测试集
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
# 导入模型,调用逻辑回归 LogisticRegression()函数
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(penalty='l2',solver='newton-cg',multi_class='multinomial')
lr.fit(x_train,y_train)

输出

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='multinomial', n_jobs=None, penalty='l2',
                   random_state=None, solver='newton-cg', tol=0.0001, verbose=0,
                   warm_start=False)

我们详细解释一下 LogisticRegression 中各项参数的定义
penalty:正则化选择参数,默认方式为 L2 正则化
solver:优化算法选择参数,有{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}四种参数,如果你是用的是 L1 正则化,则只能使用 libinear,这是因为 L1 正则化并不是一个连续可导的损失函数。
muti_class:分类方式选择参数,包括{‘ovr’, ‘multinomial’}两种参数。简单来说,OvR 相对简单,但分类效果相对略差(这里指大多数样本分布情况,某些样本分布下 OvR 可能更好)。而 MvM 分类相对精确,但是分类速度没有 OvR 快。

# 对模型进行评估
print('逻辑回归训练集准确率:%.3f'% lr.score(x_train,y_train))
print('逻辑回归测试集准确率:%.3f'% lr.score(x_test,y_test))
from sklearn import metrics
pred = lr.predict(x_test)
accuracy = metrics.accuracy_score(y_test,pred)
print('逻辑回归模型准确率:%.3f'% accuracy)

输出

逻辑回归训练集准确率:0.850
逻辑回归测试集准确率:0.733
逻辑回归模型准确率:0.733

绘制结果可视化,我们通过两列数据绘制数据集的决策边界。

import numpy as np
lx1, rx1 = X[:,0].min() - 0.5,X[:,0].max() + 0.5
lx2, rx2 = X[:,1].min() - 0.5,X[:,1].max() + 0.5
h = 0.02
x1,x2 = np.meshgrid(np.arange(lx1,rx1,h),np.arange(lx2,rx2,h))
grid_test = np.stack((x1.flat,x2.flat),axis = 1)
grid_pred = lr.predict(grid_test)
grid_pred = grid_pred.reshape(x1.shape)
import matplotlib.pyplot as plt
import matplotlib as mpl
plt.figure(1,figsize=(6,5))
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
plt.pcolormesh(x1,x2,grid_pred,cmap=cm_light)
plt.scatter(X[:50, 0], X[:50, 1], marker = '*', edgecolors='red', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], marker = '^', edgecolors='k', label='versicolor')
plt.scatter(X[100:150, 0], X[100:150, 1], marker = 'o', edgecolors='k', label='virginica')
plt.xlabel('Calyx length-Sepal length')
plt.ylabel('Calyx width-Sepal width')
plt.legend(loc = 2)
plt.xlim(lx1.min(), rx1.max())
plt.ylim(lx2.min(), rx2.max())
plt.title("Logical regression of iris classification results", fontsize = 15)
plt.xticks(())
plt.yticks(())
plt.grid()
plt.show()

e6321f920c9ab8c4ec71b7f4e18757a8.png

我们可以得到结果:setosa 类线性可分,而 versicolor 类与 virginica 类线性不可分。

3

损失函数公式推导

我们已经知道,逻辑回归的预测函数 h(x)

  假设有 N 个样本,样本的标签有 0 和 1 两类。假设 yi=1 的概率为 pi,yi=0 的概率为 1-pi,基于此,我们可以得到以下公式:

  可以发现,当 y 取 0 以及当 y 取 1 的时候,损失函数分别为:

  概率求解得到极大似然函数

  对该函数取对数可以得到损失函数公式

  为什么取对数呢?因为取对数之后,原先的乘法就变成了加法,并且单调性一致,不会改变极值的位置,便于后续的求导。

- EOF -

 
 

bcdc27d69679d7bacd7218305dfd74fa.jpeg

 
 
 
 
 
 
 
 
往期精彩回顾




适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载中国大学慕课《机器学习》(黄海广主讲)机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码(读博请说明)

6721c6cd68979390658904ea0999c847.png

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一个简单的逻辑回归分类算法Python 代码示例: ```python import numpy as np class LogisticRegression: def __init__(self, learning_rate=0.01, num_iterations=100000, fit_intercept=True): self.learning_rate = learning_rate self.num_iterations = num_iterations self.fit_intercept = fit_intercept def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def fit(self, X, y): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) # 初始化权重 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iterations): z = np.dot(X, self.theta) h = self.sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.theta -= self.learning_rate * gradient def predict_prob(self, X): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) return self.sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 这里我们定义了一个 `LogisticRegression` 类,它有以下几个方法: - `__init__`:初始化逻辑回归模型的超参数,包括学习率、迭代次数和是否拟合截距项。 - `sigmoid`:sigmoid 函数,用于将线性函数的输出转换为概率值。 - `fit`:训练模型的方法,使用梯度下降算法来更新权重。 - `predict_prob`:给定输入数据,返回模型预测的类别概率。 - `predict`:给定输入数据和阈值,返回模型预测的类别。 在使用时,首先需要创建一个 `LogisticRegression` 类的实例,然后调用 `fit` 方法来训练模型。训练完成后,可以使用 `predict_prob` 方法来预测类别的概率,或使用 `predict` 方法来预测具体的类别。 ### 回答2: 逻辑回归是一种常用的机器学习算法,用于解决二分类问题。其基本原理是利用线性回归模型的预测结果通过一个sigmoid函数转换成0或1的概率值进行分类预测。 以下是一个简单的机器学习逻辑回归分类算法代码: 1. 导入所需的库: ```python import numpy as np from sklearn.linear_model import LogisticRegression ``` 2. 准备数据: ```python X = np.array([[x1, x2], [x1, x2], ..., [x1, x2]]) # 特征矩阵,每行代表一个样本的特征向量 y = np.array([y1, y2, ..., yn]) # 标签向量,表示每个样本的类别 ``` 3. 创建逻辑回归模型对象: ```python model = LogisticRegression() ``` 4. 使用训练数据进行模型训练: ```python model.fit(X, y) ``` 5. 对新样本进行分类预测: ```python new_sample = np.array([x1, x2]) # 待预测的新样本的特征向量 predicted_class = model.predict([new_sample]) # 预测样本的类别 ``` 以上是一个简单的机器学习逻辑回归分类算法代码实现。要注意的是,在实际应用中,可能需要进行特征工程、数据预处理、模型评估等步骤来提高分类效果。此外,可以通过调整模型的参数,如正则化系数等,来优化模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值